首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ability of the nitroso derivative of the drug cimetidine to interact with cellular macromolecules in the intact rat was investigated. Radiolabelled nitrosocimetidine (NC) was shown to methylate DNA in a variety of tissues in the rat after oral administration. Radioactivity was also detected in the RNA and protein extracted from these same tissues. Methylation of DNA by the parent compound, cimetidine, was not detected in any of the tissues studied. For comparison, the DNA methylation produced by the carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) dosed orally was measured. DNA alkylation by MNNG was found to be approx. 2–36 times greater than that produced by NC, varying with the tissues studied. The highest yield of DNA alkylation was found in the stomach for MNNG and the small intestine for nitrosocimetidine suggesting pharmacokinetic differences.  相似文献   

3.
Metabolism of and DNA methylation by dimethylnitrosamine (DMNA) were measured in the livers of GR male and C3Hf male and female mice which showed widely different susceptibilities to tumour formation by this hepatocarcinogen.It was previously shown that continuous DMNA administration results in vascular tumours in the livers of C3Hf female mice, whereas C3Hf males develop a high incidence of hepatomas both after continuous treatment and after a single injection of DMNA to adult animals. GR males showed a low susceptibility to the formation of liver tumours under these conditions.N-demethylation of DMNA by liver microsomes showed similar activity for both C3Hf sexes; but GR males were significantly more active.At 5 and 48 h after a single injection of [14C]DMNA, the amounts of O6-methylguanine (O6-MeGua), 7-methylguanine (7-MeGua), 1-methyladenine (1-MeAde) and 3-methyladenine (3-MeAde) were similar for C3Hf males and females, with the possible exception of 7-MeGua which seemed to be slightly higher in the female. O6 MeGua disappeared from C3Hf liver DNA with an apparent half-life time of about 24 h. Especially at 48 h after injection, GR liver DNA was methylated to a higher extent than was C3Hf liver DNA. This result, which antiparallels the tumour incidences, may be explained by the differences in rate of N-demethylation of DMNA. where higher 7-MeGua values were found for fasted animals under otherwise identical conditions.The general conclusior to be drawn is that neither the metabolism of DMNA nor DNA methylation by this carcinogen in the livers of male GR and C3Hf male and female mice correlates With the formation of hepatomas after DMNA administration. A possible explanation of the absence of such a correlation between DNA methylation and tumour formation might be that there exists no causal relationship between both events. However, a complicating factor is that the eventual development of a tumour may be influenced by a number of—sometimes decisive—secondary factors like hormonal25 or immunological26 status or the presence of cellular proliferation in target organs27,28. Evidence from other systems suggests a relationship between inactivating, mutagenic or carcinogenic effects of alkylating agents and their ability to interact with nucleic acids, especially DNA29,30.  相似文献   

4.
Young adult inbred Swiss mice given single or repeated equitoxic doses of N-methyl-N-nitrosourea (MNUA) or methyl methanesulphonate (MMS) develop thymomas and pulmonary adenomas only following MNUA in spite of nearly identical overall alkylation of DNA of tumour target tissues by both agents due mainly to the biologically ineffective product 7-methylguanine. The main difference in DNA alkylation was the production of O6-methylguinine, a known pre-mutagenic product, by MNUA in amounts 10 or more times as large as following MMS. This supports the possibility that somatic mutations are a part of the process of carcinogenesis.  相似文献   

5.
Exposure of rats to the hepatocarcinogen N-nitrosodimethylamine (NDMA) (0.2-2.64 ppm in the drinking water) for up to 180 days resulted in rapid accumulation of N7- and O6-methylguanine in liver and white blood cell DNA, maximum adduct levels being reached within 1-7 days, depending on the dose. The levels of both adducts remained constant up to treatment day 28, subsequently declining slowly to about 40% of maximal levels for the liver and 60% for white blood cells by day 180. In order to elucidate the role of DNA replication in NDMA hepatocarcinogenesis, changes in liver cell labeling index (LI) were also measured on treatment days 21, 120 and 180. Although the time- and dose-dependence of the observed effects were complex, a clear trend towards increased rates of hepatocyte LI, as indicated by BrdU incorporation, with increasing NDMA doses was evident, particularly above 1 ppm, a concentration above which NDMA hepatocarcinogenicity is known to increase sharply. In contrast, no increase in Kupffer cell DNA replication was found at any of the doses employed, in accordance with the low susceptibility of these cells to NDMA-induced carcinogenesis. No significant increase in the occurrence of necrotic or apoptotic cells was noted under the treatment conditions employed. These results suggest that, in addition to the accumulation of DNA damage, alterations in hepatocyte DNA replication during the chronic NDMA exposure may influence the dose-dependence of its carcinogenic efficacy.  相似文献   

6.
A glycogen-adipoyldihydrazide-Sepharose 4B column has been prepared for the analysis of glycogen-binding protein components of rat tissues. Glycogen-metabolizing enzymes; glycogen synthase, phosphorylase, branching enzyme, and debranching enzyme of skeletal muscle and liver have been adsorbed to the column, while those of brain showed very low affinities to it. On SDS gel electrophoresis of the glycogen-binding protein fractions, at least five and nine additional protein components have been detected in skeletal muscle and liver, respectively.  相似文献   

7.

Background

During actomyosin interactions, the transduction of energy from ATP hydrolysis to motility seems to occur with the modulation of hydration. Trimethylamine N-oxide (TMAO) perturbs the surface of proteins by altering hydrogen bonding in a manner opposite to that of urea. Hence, we focus on the effects of TMAO on the motility and ATPase activation of actomyosin complexes.

Methods

Actin and heavy meromyosin (HMM) were prepared from rabbit skeletal muscle. Structural changes in HMM were detected using fluorescence and circular dichroism spectroscopy. The sliding velocity of rhodamine-phalloidin-bound actin filaments on HMM was measured using an in vitro motility assay. ATPase activity was measured using a malachite green method.

Results

Although TMAO, unlike urea, stabilized the HMM structure, both the sliding velocity and ATPase activity of acto-HMM were considerably decreased with increasing TMAO concentrations from 0–1.0 M. Whereas urea-induced decreases in the structural stability of HMM were recovered by TMAO, TMAO further decreased the urea-induced decrease in ATPase activation. Urea and TMAO were found to have counteractive effects on motility at concentrations of 0.6 M and 0.2 M, respectively.

Conclusions

The excessive stabilization of the HMM structure by TMAO may suppress its activities; however, the counteractive effects of urea and TMAO on actomyosin motor activity is distinct from their effects on HMM stability.

General significance

The present results provide insight into not only the water-related properties of proteins, but also the physiological significance of TMAO and urea osmolytes in the muscular proteins of water-stressed animals.  相似文献   

8.
Partially purified enzyme fraction from rat kidney possessing high uridine kinase and phosphomonoesterase activity was insolubilized by means of zinc precipitation without substantial loss of the activity. While uridine kinase in a soluble and Zn-precipitated form was inhibited by low concentrations (0.5-1.0 mM) of Zn2+-ions, phosphomonoesterase was fully active. In contrast to the soluble fraction, the two enzymes in zinc-precipitated and lyophilized preparations were stable on heating at 100 degrees C. Metal complexed proteins catalyze the dephosphorylation of 5'-UMP, 6-AzaUMP as well as of 2'(3')-UMP or 2,4-dinitrophenyl phosphate indicating thus the presence of several phosphomonoesterases in the complex.  相似文献   

9.
10.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   

11.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

12.
The biosynthesis of DNA appeared to be unaffected in the water-stressed seedlings of finger millet (Eleucine coracana), but an increase in the synthesis de novo of RNA and proteins was observed during mild water stress. The polyribosome content was also increased in stressed finger millet seedlings. Proline, a solute which accumulates during water stress, enhanced the incorporation of radioactive precursors into proteins; caused an increase in translatability of finger millet messengers in vitro; and stabilized the polyribosomes isolated from normal seedlings. The results emphasize the role of proline in the adaptation of finger millet to the intermittent drought it experiences during cultivation.  相似文献   

13.
Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold “tetramer”. Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.  相似文献   

14.
Poly (ADP-ribose) polymerase (PARP) inhibitor olaparib selectively kills cancer cells with BRCA-deficiency and is approved for BRCA-mutated breast, ovarian and pancreatic cancers by FDA. However, phase III study of olaparib failed to show a significant improvement in overall survival in patients with gastric cancer (GC). To discover an effective biomarker for GC patient-selection in olaparib treatment, we analyzed proteomic profiling of 12 GC cell lines. MTA2 was identified to confer sensitivity to olaparib by aggravating olaparib-induced replication stress in cancer cells. Mechanistically, we applied Cleavage Under Targets and Tagmentation assay to find that MTA2 proteins preferentially bind regions of replication origin-associated DNA sequences, which could be enhanced by olaparib treatment. Furthermore, MTA2 was validated here to render cancer cells susceptible to combination of olaparib with ATR inhibitor AZD6738. In general, our study identified MTA2 as a potential biomarker for olaparib sensitivity by aggravating olaparib-induced replication stress.  相似文献   

15.
The incorporation of radiolabeled leucine into phytohemagglutinin-stimulated human lymphocytes increases by 9 hours after mitogen addition in the young whereas this process is delayed by two-fold in the aged (18 hours). Once induced, the leucine incorporation is about 56% less in the aged as compared to the young. The induction of phosphofructokinase (PFK) catalytic activity mimics the induction of protein synthesis in both young (9 hours) and aged (18 hours) subjects also taking twice as long to induce in the aged and attaining much lower levels of induction with increasing subject age. The increase of thymidine incorporation in mitogen-stimulated cells does not occur until 12 hours after the increase in leucine incorporation in both the young (21 hours) and aged (30 hours) which also represents a 9 hour age-related delay in induction. The marked increase in protein synthesis rate occurs in a concerted manner with the induction of glycolysis and the delay and impairment in protein biosynthesis in the aged appears to relate to the similar age-related findings for glycolytic enzyme induction. The mitogen-induced increase in DNA synthesis is a later event and the age-related delay in DNA synthesis induction may be secondary to the delay in the induction of protein synthesis. Other enzyme-dependent processes besides DNA synthesis and glycolysis may also be secondary to a primary slowing of protein synthesis in the aged and related to the delayed cell cycle time frequently observed in aged subjects.  相似文献   

16.
Arginase, which catalyzes the cleavage of l-arginine to urea and ornithine, was detected in both soluble and particulate fractions of mouse epidermis. In a typical experiment, about 75 and 25% of the total arginase activity was associated with the soluble (100 000 × g supernatant) and the washed particulate fraction, respectively. Both soluble and particulate enzymes required the presence of divalent Mn2+ for activity. Arginase activity was increased by about 50% in the particulate fraction, but not in the soluble fraction, by preheating the fractions at either 50 or 55°C in the presence of 15 mM MnCl2. Enzyme activity in both fractions, in the absence of 15 mM MnCl2, dropped precipitously during heating. A comparison of the nature of arginases in the soluble and particulate fractions revealed similar Km values (13 mM) and pH optima (9.5) and identical heat denaturation curves. Application of 10 nmol of 12-O-tetradecanoylphorbol-13-acetate to mouse skin did not increase arginase activity in either fraction over a period of 24 h. In contrast, there was a large increase in ornithine decarboxylase activity in the soluble fraction 4.5 h after treatment. Mouse epidermal ornithine decarboxylase activity was much less than arginase activity and was predominantly localized in the soluble fraction. These results indicate that the normal level of arginase activity is not a limiting factor for the stimulation of polyamine biosynthesis by TPA. High arginase activity in mouse epidermis may play a role in providing ornithine for polyamine biosynthesis and in the production of glutamate and proline as well as in the production of keratinous proteins.  相似文献   

17.
Claspin is a critical mediator protein in the DNA replication checkpoint, responsible for ATR-dependent activation of the effector kinase Chk1. Cdc7, an essential kinase required for the initiation of DNA replication, can also interact with and phosphorylate Claspin. In this study we use small-molecule inhibitors of Cdc7 kinase to further understand the relationship between Cdc7, Claspin and Chk1 activation. We demonstrate that inhibition of Cdc7 kinase delays HU-induced phosphorylation of Chk1 but does not affect the maintenance of the replication checkpoint once it is established. We find that while chromatin association of Claspin is not affected by Cdc7 inhibition, Claspin phosphorylation is attenuated following HU treatment, which may be responsible for the altered kinetics of HU-induced Chk1 phosphorylation. We demonstrate that Claspin is an in vitro substrate of Cdc7 kinase, and using mass-spectrometry, we identify multiple phosphorylation sites that help to define a Cdc7 phosphorylation motif. Finally, we show that the interaction between Claspin and Cdc7 is not dependent on Cdc7 kinase activity, but Claspin interaction with the DNA helicase subunit Mcm2 is lost upon Cdc7 inhibition. We propose Cdc7-dependent phosphorylation regulates critical protein-protein interactions and modulates Claspin’s function in the DNA replication checkpoint.  相似文献   

18.
The effect of 4-hydroxyaminoquinoline-1-oxide (4-HAQO) on DNA synthesis in the pancreas and liver, target and non-target organs for 4-HAQO carcinogenesis, respectively, were compared. Pancreatic and liver DNA synthesis were simultaneously induced in rats fed a protein deficient diet containing 0.5% DL-ethionine for 18 days, and DNA synthesis in both tissues was inhibited by hydroxyurea. A single i.v. injection of 4-HAQO at a dose of 7 mg/kg body weight also inhibited DNA synthesis in both tissues within 4 h. In the pancreas the inhibition was maximum at a dose of 7 mg/kg, and DNA synthesis was less than in the pancreas of rats fed a control grain diet. This inhibition continued for the subsequent 5 days which were tested. In the liver, the degree of inhibition was less than in pancreas but the value remained higher than in rats fed control diet. The inhibition of liver DNA synthesis at a dose of 7 mg/kg completely recovered within 1 day. These results suggest that the lesions of DNA induced by 4-HAQO and its repair might be different between the pancreas and the liver. A pancreatic chemical carcinogen, 4-HAQO, might thus have the same cytotoxic effect that liver carcinogens have toward the liver resulting in failure to respond to mitotic stimuli. This might be causally related to the organotropism of 4-HAQO toward the pancreas.  相似文献   

19.
20.
Nasiri M  Saadat I  Omidvari S  Saadat M 《Gene》2012,505(1):195-197
The human XRCC7 is a DNA double-strand break (DSBs) repair gene, involved in non-homologous end joining (NHEJ). It is speculated that DNA DSBs repair have an important role during development of breast cancer. The human XRCC7 is a NHEJ DSBs repair gene. Genetic variation G6721T of XRCC7 (rs7003908) is located in the intron 8 of the gene. This polymorphism may regulate splicing and cause mRNA instability. In the present study, we specifically investigated whether common G6721T genetic variant of XRCC7 was associated with an altered risk of breast cancer. The present study included 362 females with breast cancer. Age frequency-matched controls (362 persons) were randomly selected from the healthy female blood donors, according to the age distribution of the cases. Using RFLP-PCR based method, the polymorphism of XRCC7 was determined. The TG (OR=1.20, 95% CI: 0.83-1.74, P=0.320) and TT (OR=1.01, 95% CI: 0.67-1.53, P=0.933) genotypes had no significant effect on risk of breast cancer, in comparison with the GG genotype. Our present findings indicate that the TT and TG genotypes were not associated with an altered breast cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号