首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
内皮素通过最后区易化大鼠延髓腹外侧头端区神经元活动   总被引:1,自引:0,他引:1  
Li DP  He RR 《生理学报》1999,51(3):263-271
在35只切断双侧缓冲神经、用氨基甲酸乙酯-α氯醛糖混合麻醉的Sprague-Dawley大鼠,应用细胞外记录的电生理学方法,由RM-6000型多道生理记录仪和WS-682G热阵记录器(频响范围0~2.8kHz)同步记录血压、心率和单位神经元放电,观察颈动脉注射内皮素对87个延髓腹是头端区(RVLM)自发放电神经元活动的影响,所得结果如下;(1)颈动脉注射ET-1(0.3nmol/kg)时36个单位  相似文献   

2.
《Life sciences》1995,58(1):PL1-PL7
Renal effects of FR139317, an endothelin ETA receptor antagonist, were examined using anesthetized normotensive and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. The intravenous bolus injection of FR139317 (10 mg/kg) produced a slight decrease in mean blood pressure (MAP; −13%) in the control rats and this hypotension was accompanied by a moderate renal vasodilation (renal vascular resistance: RVR; −12%). In the DOCA-salt hypertensive rat, FR139317 had a more pronounced hypotensive effect (MAP; −26%) accompanied by a potent renal vasodilation (RVR; −33%). FR 139317 significantly increased renal blood flow only in the DOCAsalt rats. In contrast, FR139317 produced a significant decrease in urine flow and urinary sodium excretion only in control rats. Northern blot analysis revealed that the renal prepro endothelin-1 (ET-1) mRNA level was significantly increased in DOCA-salt hypertensive rats. Thus, it seems likely that endogenous ET-1 is responsible for the maintenance of DOCA-salt-induced hypertension. We also suggest that at least in part, ET-1 and £ta receptors are involved in renal hemodynamic abnormalities in DOCA-salt-induced hypertension. The augmentation of renal ET-1 production may possibly have a function in the development and maintenance of DOCA-salt-induced hypertension.  相似文献   

3.
Experiments have been performed in order to evaluate the respiratory consequences of a suppression or accumulation of endogenous opioid peptides, in the neuronal network which generates the motor respiratory activity. Iontophoretic application of naloxone onto respiratory neurons increases their firing activity and increases their respiratory modulation. On the other hand the local injection of kelatorphan (an enkephalinase inhibitor) decreases the firing of respiratory neurons and thus reduces the respiratory modulation. This effect of kelatorphan mimics the effect on respiratory neuron of an iontophoretic application of met-enkephalin. Furthermore the local injection of kelatorphan reduces the frequency of the respiratory output recorded from the phrenic nerve. This effect is reversed by systemic administration of naloxone. The results demonstrate the involvement of endogenous opioid peptides in the control of breathing suggesting that in Sudden Infant Death Syndrome a possible dysregulation in opioidergic system could occur.  相似文献   

4.
We investigated the involvement of matrix metalloproteinases (MMPs), tissue inhibitor (TIMP) and endothelin-1 (ET-1) in the renal damage in spontaneously hypertensive rats (SHR) following nitric oxide (NO) deprivation. SHR received Nomega-nitro-L-arginine methyl ester (L-NAME) from 5 wk-old for a period of 30 days. An ETA antagonist, FR139317 was used. We gave SHR FR139317 alone and cotreatment with L-NAME. L-NAME caused systemic hypertension, decrease in plasma nitrate/nitrite, increases in blood urea nitrogen and creatinine, impairment of glomerular dynamics. NO deprivation reduced the renal tissue cGMP, but it increased the collagen volume fraction, number of sclerotic glomeruli, arteriolar injury score and glomerular injury score. In addition, L-NAME elevated the plasma ET-1 at day 5. Cotreatment with FR139317 alleviated the L-NAME-induced functional and structural changes of renal glomeruli. L-NAME administration for 5 to 10 days resulted in decreases in MMP2 and MMP9 with increasing TIMP2. After L-NAME for 15 days, opposite changes (increases in MMP2 and MMP9 with a decrease in TIMP2) were observed. FR139317 cotreatment ameliorated the L-NAME-induced changes in MMP2 and MMP9 throughout the 30-day observation period. The ETA antagonist cotreatment attenuated the L-NAME-induced increase in TIMP2 before day 15, but not after day 20. The results indicate that ET-1, MMPs and TIMP are involved at the early stage (before 10 days) of glomerular sclerosis and arteriosclerosis with functional impairment following NO deprivation. The changes in MMPs and TIMP at the late stage (after 20 days) may be a compensatory response to prevent further renal damage.  相似文献   

5.
Cholecystokinin (CCK) is a potential mediator of gastrointestinal vasodilatation during digestion. To determine whether CCK influences sympathetic vasomotor function, we examined the effect of systemic CCK administration on mean arterial blood pressure (MAP), heart rate (HR), lumbar sympathetic nerve discharge (LSND), splanchnic sympathetic nerve discharge (SSND), and the discharge of presympathetic neurons of the rostral ventrolateral medulla (RVLM) in alpha-chloralose-anesthetized rats. CCK (1-8 microg/kg iv) reduced MAP, HR, and SSND and transiently increased LSND. Vagotomy abolished the effects of CCK on MAP and SSND as did the CCK-A receptor antagonist devazepide (0.5 mg/kg iv). The bradycardic effect of CCK was unaltered by vagotomy but abolished by devazepide. CCK increased superior mesenteric arterial conductance but did not alter iliac conductance. CCK inhibited a subpopulation (approximately 49%) of RVLM presympathetic neurons whereas approximately 28% of neurons tested were activated by CCK. The effects of CCK on RVLM neuronal discharge were blocked by devazepide. RVLM neurons inhibited by exogenous CCK acting via CCK-A receptors on vagal afferents may control sympathetic vasomotor outflow to the gastrointestinal tract vasculature.  相似文献   

6.
1. The aim of these studies was to test the hypothesis that glutamate is the principal excitatory neurotransmitter in the sympathetic premotor pathway from the rostral ventrolateral medulla (RVLM) to the sympathetic preganglionic neurons (SPNs) in the thoracic spinal cord.2. Iontophoretic and pressure ejection of glutamate receptor agonists and antagonists was made onto antidromically identified splanchnic and adrenal SPNs before and during electrical stimulation of the RVLM in urethane/chloralose-anesthetized, artificially ventilated rats.3. SPNs were excited by both NMDA and non-NMDA glutamate receptor agonists. Blockade of glutamate receptors in the IML interrupted the ability of electrical activation of sympathetic premotor neurons in the RVLM to excite SPNs. Within the IML, antergradely labeled terminals of RVLM neurons were found to contain glutamate immunoreactivity and to make asymmetric synapses on local dendrites.4. These data support a significant role for glutamate neurotransmission in mediating the tonic and phasic excitation of SPNs by the sympathetic premotor pathway from the RVLM. It seems likely that stimulation of the RVLM produces glutamate release from both C1 and non-PNMT-containing axon terminals in the IML.  相似文献   

7.
The role of excitatory amino acid (EAA) receptors in the rostral ventrolateral medulla (RVLM) in maintaining resting sympathetic vasomotor tone remains unclear. It has been proposed that EAA receptors in the RVLM mediate excitatory inputs both to presympathetic neurons and to interneurons in the caudal ventrolateral medulla (CVLM), which then provide a counterbalancing inhibition of RVLM presympathetic neurons. In this study, we tested this hypothesis by determining the effect of blockade of EAA receptors in the RVLM on mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), after inhibition of CVLM neurons. In anesthetized rats, bilateral injections of muscimol in the CVLM increased MAP, HR, and RSNA. Subsequent bilateral injections of kynurenic acid (Kyn, 2.7 nmol) in the RVLM caused a modest reduction of approximately 20 mmHg in the MAP but had no effect, when compared with the effect of vehicle injection alone, on HR or RSNA. By approximately 50 min after the injections of Kyn or vehicle in the RVLM, the MAP had stabilized at a level close to its original baseline level, but the HR and RSNA stabilized at levels above baseline. The results indicate that removal of tonic EAA drive to RVLM neurons has little effect on the tonic activity of RVLM presympathetic neurons, even when inputs from the CVLM are blocked. Thus the tonic activity of RVLM presympathetic neurons under these conditions is dependent on excitatory synaptic inputs mediated by non-EAA receptors and/or the autoactivity of these neurons.  相似文献   

8.
The dorsomedial hypothalamic nucleus (DMH) is believed to play a key role in mediating vasomotor and cardiac responses evoked by an acute stress. Inhibition of neurons in the rostral ventrolateral medulla (RVLM) greatly reduces the increase in renal sympathetic nerve activity (RSNA) evoked by activation of the DMH, indicating that RVLM neurons mediate, at least in part, the vasomotor component of the DMH-evoked response. In this study, the first aim was to determine whether neurons in the medullary raphe pallidus (RP) region also contribute to the DMH-evoked vasomotor response, because it has been shown that the DMH-evoked tachycardia is mediated by the RP region. The second aim was to directly assess the effect of DMH activation on the firing rate of RVLM sympathetic premotor neurons. In urethane-anesthetized rats, injection of the GABA(A) receptor agonist muscimol (but not vehicle solution) in the RP region caused a modest ( approximately 25%) but significant reduction in the increase in RSNA evoked by DMH disinhibition (by microinjection of bicuculline). In other experiments, disinhibition of the DMH resulted in a powerful excitation (increase in firing rate of approximately 400%) of 5 out of 6 spinally projecting barosensitive neurons in the RVLM. The results indicate that neurons in the RP region make a modest contribution to the renal sympathoexcitatory response evoked from the DMH and also that sympathetic premotor neurons in the RVLM receive strong excitatory inputs from DMH neurons, consistent with the view that the RVLM plays a key role in mediating sympathetic vasomotor responses arising from the DMH.  相似文献   

9.
In acute experiments on cats, endothelin-1 (ET-1) was injected into the sympathoexcitatory neuronal structures of the ventrolateral medulla (VLM) and the effects of injections on the peripheral mechanisms of circulation control were studied. Effects of ET-1 appeared to be dose-dependent. Injections of 200 pmol ET-1 into the structures of the tested brain zone resulted in considerable regular hypertensive responses due to an increase in the common peripheral vascular resistance (PVR), which corresponds to vasospasm. ET-1 in a smaller dose (100 pmol) could cause either hypertensive or, in some cases, hypotensive responses. Hemodynamic responses induced by injections of 100 pmol ET-1 into the sites of localization of vasomotor neurons in the VLM were based on less expressed shifts in the peripheral vascular resistance, as compared with the effects of ET-1 in the dose of 200 pmol. The effects were related to either facilitation or suppression (in the cases of hypertensive or hypotensive responses, respectively) of descending sympathoexcitatory influences from the VLM on different vascular pools. The threshold for excitation of vasomotor neurons in the tested brain area is likely to be considerably lower as compared with that for medullary “cardiac” neurons, because injections of 200 pmol ET-1 in the site of localization of cardiac neurons were followed by either enhancement, or suppression of the contractile myocardiac activity, while the heart rate usually decreased. The effects of ET-1 were facilitated after blocking of GABAa receptors with bicuculline and attenuated after preliminary application of GABA to the ventral surface of the medulla. The results indicate the possibility of interaction ET-1 and GABA on the neurons in the VLM. Such interaction is likely to be directed toward providing an optimum mode of regulation of the blood circulation.  相似文献   

10.
This study was undertaken to test the hypothesis that gamma-aminobutyric acid (GABA) is an endogeneous neurotransmitter regulating the activity of a class of putative nociceptive modulatory neurons (termed "off-cells") in the rostral ventromedial medulla (RVM) of the barbiturate-anesthetized rat. Off-cells, which are believed to correspond to the RVM output neuron that inhibits nociceptive processing at the level of the spinal cord, exhibit an abrupt pause in firing that begins immediately prior to the occurrence of the tail flick response (TF), a nocifensive reflex evoked by application of noxious heat to the tail. Single-unit recording and iontophoretic techniques were used to examine the ability of the GABAA receptor antagonist bicuculline methiodide (BIC) to antagonize selectively the characteristic off-cell pause. Iontophoretic application of BIC (5-30 nA) blocked the TF-related pause in each of the off-cells tested. This effect of BIC was generally slow in onset, and outlasted the period of application by several minutes. BIC iontophoresis also eliminated the cyclic alternation between active and silent periods that is often displayed by off-cells in lightly anesthetized rats. BIC application did not have a consistent effect on the firing of two other classes of RVM neurons ("on-cells" and "neutral cells"). Iontophoretically applied BIC antagonized the inhibitory effect of iontophoretically applied GABA, but not that produced by glycine. The glycine receptor antagonist strychnine did not mimic the action of BIC on off-cell activity. These data demonstrate antagonism of a synaptically evoked response using iontophoretic application of BIC, and provide strong evidence that the inhibitory neurotransmitter GABA mediates the TF-related off-cell pause. Taken together with behavioral experiments demonstrating that a GABA-mediated inhibitory process within RVM is crucial in permitting execution of the TF response, the present observations point to the significant functional relevance of GABA transmission within RVM in modulation of nociception.  相似文献   

11.
Systemic administration of cholecystokinin (CCK) inhibits a subpopulation of rostral ventrolateral medulla (RVLM) presympathetic vasomotor neurons. This study was designed to determine whether this effect involved subdiaphragmatic vagal afferents and/or central N-methyl-d-aspartic acid (NMDA) receptors. Recordings were made from CCK-sensitive RVLM presympathetic vasomotor neurons in halothane-anesthetized, paralyzed male Sprague-Dawley rats. The responses of the neurons to CCK (2 and 4 microg/kg iv), phenylephrine (PE; 5 microg/kg iv), and phenylbiguanide (PBG; 5 microg/kg iv) were tested before and after application of the local anesthetic lidocaine (2% wt/vol gel; 1 ml) to the subdiaphragmatic vagi at the level of the esophagus. In seven separate experiments, lidocaine markedly reduced the inhibitory effects of CCK on RVLM presympathetic neuronal discharge rate. In other experiments, the effect of systemic administration of dizocilpine (1 mg/kg iv), a noncompetitive antagonist at NMDA receptor ion channels, on the RVLM presympathetic neuronal responses to CCK, PBG, and PE was tested. In all cases (n = 6 neurons in 6 individual rats), dizocilpine inhibited the effects of CCK, PBG, and PE on RVLM presympathetic neuronal discharge. These results suggest that the effects of systemic CCK on the discharge of RVLM presympathetic neurons is mediated via an action on receptors located on subdiaphragmatic vagal afferents. Furthermore, the data suggest that CCK activates a central pathway involving NMDA receptors to produce inhibition of RVLM presympathetic neuronal discharge.  相似文献   

12.
Anatomical studies indicate that sympathetic preganglionic neurons receive inputs from several brain stem cell groups, but the functional significance of this organization for vasomotor control is not known. We studied the roles of two brain stem premotor cell groups, the medullary raphé and the rostral ventrolateral medulla (RVLM), in determining the activity of sympathetic vasomotor supply to the tail of urethane-anesthetized, artificially ventilated rats. Chemical inactivation of either RVLM (bilaterally) or raphé cells by microinjecting glycine (120-200 nl, 0.5 M) or muscimol (40-160 nl, 2.1-8 mM) was sufficient to inhibit ongoing tail sympathetic fiber activity and to block its normally strong response to mild cooling via the trunk skin (reducing rectal temperature from 38.5 to 37 degrees C). After bilateral RVLM inactivation, tail sympathetic fibers could still be excited by chemical stimulation of raphé neurons (l-glutamate, 120 nl, 50 mM), and strong cooling (rectal temperature approximately 33 degrees C) caused a low level of ongoing activity. After chemical inhibition of raphé neurons, however, neither strong cooling nor chemical stimulation of RVLM neurons activated tail sympathetic fibers. Electrical stimulation of the RVLM elicited tail sympathetic fiber volleys before and after local anesthesia of the raphé (150-500 nl of 5% tetracaine), demonstrating the existence of an independent descending excitatory pathway from the RVLM. The data show that neurons in both the medullary raphé and the RVLM, acting together, provide the essential drive to support vasomotor tone to the tail. Inputs from these two premotor nuclei interact in a mutually facilitatory manner to determine tonic, and cold-induced, tail sympathetic activity.  相似文献   

13.
Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.  相似文献   

14.
15.
Mu-opioid receptor activation increases body temperature and affects cardiovascular function. In the present study, fentanyl was administered intravenously [100 mug/kg (300 nmol/kg) iv] and intracerebroventricularly [3.4 mug (10 nmol) in 10 microl icv] in urethane-chloralose-anesthetized, artificially ventilated rats. Increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA) (peak, +326% of control), BAT temperature (peak, +0.8 degrees C), renal SNA (peak, +146% of control), and heart rate (HR; peak, +32 beats/min) produced by intravenous fentanyl were abolished by premamillary transection of the neuraxis but were mimicked by intracerebroventricular administration of fentanyl, which also increased arterial pressure (AP; peak, +12 mmHg). Pretreatment with the opioid antagonist naloxone (100 nmol in 10 microl icv) eliminated the intracerebroventricular fentanyl-evoked responses. Microinjection of glycine (0.5 M, 60 nl) to inhibit local neurons in the rostral raphe pallidus (RPa) selectively reversed the intracerebroventricular fentanyl-evoked increases in BAT SNA and HR, while the fentanyl-evoked excitation in RSNA, the pressor responses, and the tachycardic responses were reversed by inhibition of neurons in the rostral ventrolateral medulla (RVLM). Prior inhibition of neurons in the dorsomedial hypothalamus eliminated the intracerebroventricular fentanyl-evoked increases in BAT SNA, BAT temperature, and HR, but not those in RSNA or AP. These results indicate that activation of central mu-opioid receptors with fentanyl can elicit BAT thermogenesis and cardiovascular stimulation through excitation of the sympathetic outflows to BAT, kidney, and heart. Activation of neurons in the rostral RPa and RVLM are essential for the increases in BAT thermogenesis and renal sympathoexcitation, respectively, induced by activation of central mu-opioid receptors. BAT thermogenesis could contribute to fentanyl-evoked hyperthermia, particularly in infants where BAT plays a significant role in thermoregulation.  相似文献   

16.
Previous work from our laboratory has demonstrated that the very low-frequency (VLF: 0-0.25 Hz) and low-frequency (LF: 0.25-0.8 Hz) power of arterial pressure variability (APV) are related to vasomotor reactivity in response to control signals from the rostral ventrolateral medulla (RVLM) via the sympathetic system in the rat. The present study evaluated the differences in the dynamic property of central vasomotor control between spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Experiments were carried out in 10- to 12-wk-old rats that were anesthetized with continuous infusion of pentobarbital sodium, paralyzed with pancuronium, and maintained on mechanical ventilation. We found that SHR exhibited significantly higher arterial pressure (AP), heart rate (HR), and VLF, LF, and high-frequency (0.8-2.4 Hz) power of APV than WKY under resting state. Broad-band electrical stimulation of the RVLM elicited parallel APV in the VLF and LF ranges in both rat strains. The evoked APV and transfer magnitude of the APV to stimulus spike rate variability (RVLM-AP magnitude) were significantly higher in SHR, especially in the LF range. The response frequency of central vasomotor control, represented by the high-cut frequency of RVLM-AP magnitude, was also extended in SHR. The disparity in RVLM-AP transfer magnitude between SHR and WKY became virtually absent after combined alpha- and beta-adrenoceptor blockade by phentolamine and propranolol. These results suggest that the dynamic control of RVLM on AP reactivity is enhanced in SHR, in which the adrenergic system may play a major role.  相似文献   

17.
We evaluated the contribution of superoxide anion (O2*-) generated by NADPH oxidase or mitochondria in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for arterial pressure maintenance are located, on cardiovascular depression induced by inducible nitric oxide synthase-derived NO after Escherichia coli lipopolysaccharide (LPS) treatment. In Sprague-Dawley rats maintained under propofol anesthesia, microinjection of LPS bilaterally into the RVLM induced progressive hypotension, bradycardia, and reduction in sympathetic vasomotor outflow over our 240-min observation period. This was accompanied by an increase in O2*- production (60-240 min) in the RVLM, alongside phosphorylation of p47(phox) or p67(phox), upregulation of gp91(phox) or p47(phox) protein, and increase in Rac-1 or NADPH oxidase activity (60-120 min), and a depression of mitochondrial respiratory enzyme activity (120-240 min). Whereas inhibition of NADPH oxidase or knockdown of the gp91(phox) or p47(phox) gene blunted the early phase (60-150 min), coenzyme Q10 or mitochondrial K(ATP) channel inhibitor antagonized the delayed phase (120-240 min) of LPS-induced increase in O2*- production in RVLM and cardiovascular depression. We conclude that, whereas NADPH oxidase-derived O2*- in RVLM participates predominantly in the early phase, O2*- generated by depression in mitochondrial respiratory enzyme activity or opening of mitoK(ATP) channels mediates the delayed phase of LPS-induced cardiovascular depression.  相似文献   

18.
Wang WZ  Rong WF  Wang CM  Wang JW  Wang JJ  Yuan WJ 《生理学报》2001,53(4):270-274
实验用多管微电极细胞外记录氨基甲酸乙酯麻醉的SD大鼠延髓头端腹外侧区(RVLM)神经元的活动,用电刺激主动脉神经和静脉注射苯肾上腺素激活压力感受器反射等方法鉴定心血管神经元,在RVLM内共记录到145个自发放电的神经元,其中33个为心血管神经元,31个为伤害调制性神经元,81个为未知功能神经元。33个心血管神经元微电泳硫酸皮质酮(CORT)后,25个(76%)神经元放电迅速加快,8个(24%)自发放电没有变化。伤害刺激引起兴奋的31个伤害调制性神经元,微电泳CORT后19个(64%)神经元放电抑制,而2个(6%)兴奋,其余10个(30%)没有反应,功能不明的81个神经元在微电泳CORT后,32个(40%0兴奋,5个(6%)抑制,44个(54%)没有反应,以上结果证明CORT可能通过非基因组机制快速影响RVLM神经元的活动,提示在应激等情况下CORT的快速作用机制可能在心血管和抗伤害等活动整合中具有一定意义。  相似文献   

19.
Ingestion of a meal results in gastrointestinal (GI) hyperemia and is associated with systemic and paracrine release of a number of peptide hormones, including cholecystokinin (CCK) and 5-hydroxytryptamine (5-HT). Systemic administration of CCK octapeptide inhibits a subset of presympathetic neurons of the rostroventrolateral medulla (RVLM) that may be responsible for driving the sympathetic vasomotor tone to the GI viscera. The aim of this study was to determine whether endogenous release of CCK and/or 5-HT also inhibits CCK-sensitive RVLM neurons. The effects of intraduodenal administration of the secretagogues sodium oleate (SO) and soybean trypsin inhibitor (SBTI) on circulating levels of CCK and 5-HT were examined. In separate experiments, the discharge rates of barosensitive, medullospinal, CCK-sensitive RVLM presympathetic vasomotor neurons were recorded after rapid intraduodenal infusion of SO-SBTI or water. Alternatively, animals were pretreated with the CCK1 receptor antagonists devazepide and lorglumide or the 5-HT3 antagonist MDL-72222 before SO-SBTI administration. Secretagogue infusion significantly increased the level of circulating CCK, but not 5-HT. SO-SBTI significantly decreased (58%) the neuronal firing rate of CCK-sensitive RVLM neurons compared with water (5%). CCK1 receptor antagonists did not reverse SO-SBTI-induced neuronal inhibition (58%), whereas the 5-HT3 antagonist significantly attenuated the effect (22%). This study demonstrates a functional relation between a subset of RVLM presympathetic vasomotor neurons and meal-related signals arising from the GI tract. It is likely that endogenously released 5-HT acts in a paracrine fashion on GI 5-HT3 receptors to initiate reflex inhibition of these neurons, resulting in GI vasodilatation by withdrawal of sympathetic tone.  相似文献   

20.
Oxidative stress because of an excessive production of superoxide anion (O2*-) is associated with hypertension. The present study evaluated the hypothesis that in the rostral ventrolateral medulla (RVLM), where the premotor neurons for the maintenance of vascular vasomotor activity are located, increased O2*- contributes to hypertension in spontaneously hypertensive rats (SHR) by modulating the cardiovascular depressive actions of nitric oxide (NO). Compared with normotensive Wistar-Kyoto (WKY) rats, SHR manifested significantly increased basal O2*- production, along with reduced manganese superoxide dismutase (MnSOD) expression and activity, in the RVLM. The magnitude of hypotension, bradycardia, or suppression of sympathetic neurogenic vasomotor tone elicited by microinjection bilaterally into the RVLM of a membrane-permeable SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin (MnTBAP), was also significantly larger in SHR. Transfection bilaterally into the RVLM of adenoviral vectors encoding endothelial nitric oxide synthase resulted in suppression of arterial pressure, heart rate, and sympathetic neurogenic vasomotor tone in both WKY rats and SHR. Microinjection of MnTBAP into the RVLM of SHR further normalized those cardiovascular parameters to the levels of WKY rats. We conclude that an elevated level of O2*- in the RVLM is associated with hypertension in SHR. More importantly, this elevated O2*- may contribute to hypertension by reducing the NO-promoted cardiovascular depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号