首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Since available structures of native bc(1) complexes show a vacant Q(o)-site, occupancy by substrate and product must be investigated by kinetic and spectroscopic approaches. In this brief review, we discuss recent advances using these approaches that throw new light on the mechanism. The rate-limiting reaction is the first electron transfer after formation of the enzyme-substrate complex at the Q(o)-site. This is formed by binding of both ubiquinol (QH(2)) and the dissociated oxidized iron-sulfur protein (ISP(ox)). A binding constant of approximately 14 can be estimated from the displacement of E(m) or pK for quinone or ISP(ox), respectively. The binding likely involves a hydrogen bond, through which a proton-coupled electron transfer occurs. An enzyme-product complex is also formed at the Q(o)-site, in which ubiquinone (Q) hydrogen bonds with the reduced ISP (ISPH). The complex has been characterized in ESEEM experiments, which detect a histidine ligand, likely His-161 of ISP (in mitochondrial numbering), with a configuration similar to that in the complex of ISPH with stigmatellin. This special configuration is lost on binding of myxothiazol. Formation of the H-bond has been explored through the redox dependence of cytochrome c oxidation. We confirm previous reports of a decrease in E(m) of ISP on addition of myxothiazol, and show that this change can be detected kinetically. We suggest that the myxothiazol-induced change reflects loss of the interaction of ISPH with Q, and that the change in E(m) reflects a binding constant of approximately 4. We discuss previous data in the light of this new hypothesis, and suggest that the native structure might involve a less than optimal configuration that lowers the binding energy of complexes formed at the Q(o)-site so as to favor dissociation. We also discuss recent results from studies of the bypass reactions at the site, which lead to superoxide (SO) production under aerobic conditions, and provide additional information about intermediate states.  相似文献   

2.
The bifurcated reaction at the Q(o)-site of the bc(1) complex provides the mechanistic basis of the proton pumping activity through which the complex conserves redox energy in the proton gradient. Structural information about the binding of quinone at the site is lacking, because the site is vacant in crystals of the native complexes. We now report the first structural characterization of the interaction of the native quinone occupant with the Rieske iron-sulfur protein in the bc(1) complex of Rhodobacter sphaeroides, using high resolution EPR. We have compared the binding configuration in the presence of quinone with the known structures for the complex with stigmatellin and myxothiazol. We have shown by using EPR and orientation-selective electron spin echo envelope modulation (ESEEM) measurements of the iron-sulfur protein that when quinone is present in the site, the isotropic hyperfine constant of one of the N(delta) atoms of a liganding histidine of the [2Fe-2S] cluster is similar to that observed when stigmatellin is present and different from the configuration in the presence of myxothiazol. The spectra also show complementary differences in nitrogen quadrupole splittings in some orientations. We suggest that the EPR characteristics, the ESEEM spectra, and the hyperfine couplings reflect a similar interaction between the iron-sulfur protein and the quinone or stigmatellin and that the N(delta) involved is that of a histidine (equivalent to His-161 in the chicken mitochondrial complex) that forms both a ligand to the cluster and a hydrogen bond with a carbonyl oxygen atom of the Q(o)-site occupant.  相似文献   

3.
We have previously reported that mutant strains of Rhodobacter capsulatus that have alanine insertions (+nAla mutants) in the hinge region of the iron sulfur (Fe-S) containing subunit of the bc(1) complex have increased redox midpoint potentials (E(m)) for their [2Fe2S] clusters. The alteration of the E(m) in these strains, which contain mutations far from the metal binding site, implied that the local environment of the metal center is indirectly altered by a change in the interaction of this subunit with the hydroquinone oxidizing (Q(o)) site [Darrouzet, E., Valkova-Valchanova, M., and Daldal, F. (2002) J. Biol. Chem. 277, 3464-3470]. Subsequently, the E(m) changes have been proposed to be predominantly due to a stronger or more stabilized hydrogen bonding between the reduced [2Fe2S] cluster and the Q(o) site inhabitant ubiquinone (Q) [Shinkarev, V. P., Kolling, D. R. J., Miller, T. J., and Crofts, A. R. (2002) Biochemistry 41, 14372-14382]. To further investigate this issue, Fe-S protein-Q interactions were monitored by electron paramagnetic resonance (EPR) spectroscopy and the findings indicated that the wild type and mutant proteins interactions with Q are similar. Moreover, when the Q(pool) was chemically depleted, the E(m) of the [2Fe2S] cluster in mutant bc(1) complexes remained more positive than a similarly treated native enzyme (e.g., the [2Fe2S] E(m) of the +2Ala mutant was 55 mV more positive than the wild type). These data suggest that the increased E(m) of the [2Fe2S] cluster in the +nAla mutants is in part due to the cluster's interaction with Q, and in part to additional factors that are independent of hydrogen bonding to Q. One such factor, the possibility of a different position of the Fe-S at the Q(o) site of the mutant proteins versus the native enzyme, was addressed by determining the orientation of the [2Fe2S] cluster in the membrane using EPR spectroscopy. In the case of the +2Ala mutant, the [2Fe2S] cluster orientation in the absence of inhibitor is different than that seen in the native enzyme. However, the +2Ala mutant cluster shared a similar orientation with the native enzyme when both samples were exposed to either stigmatellin or myxothiazol. In addition, Q(pool) extracted membranes of +2Ala mutant exhibited fewer overall orientations, with the predominant one being more similar to that observed in the non-Q-depleted membranes of the +2Ala mutant than the Q-depleted membranes of a wild-type strain. Therefore, additional component(s) that are independent of Q(o) site inhabitants and that originate from the newly observed orientations of the [2Fe2S] clusters in the +nAla mutants also contribute to the increased midpoint potentials of their [2Fe2S] clusters. While the molecular basis of these components remains to be determined, salient implications of these findings in terms of Q(o) site catalysis are discussed.  相似文献   

4.
Recent crystallographic and kinetic data have revealed the crucial role of the large scale domain movement of the iron-sulfur subunit [2Fe-2S] cluster domain during the ubihydroquinone oxidation reaction catalyzed by the cytochrome bc(1) complex. Previously, the electron paramagnetic resonance signature of the [2Fe-2S] cluster and its redox midpoint potential (E(m)) value have been used extensively to characterize the interactions of the [2Fe-2S] cluster with the occupants of the ubihydroquinone oxidation (Q(o)) catalytic site. In this work we analyze these interactions in various iron-sulfur subunit mutants that carry mutations in its flexible hinge region. We show that the E(m) increases of the iron-sulfur subunit [2Fe-2S] cluster induced either by these mutations or by the addition of stigmatellin do not act synergistically. Moreover, the E(m) increases disappear in the presence of class I inhibitors like myxothiazol. Because various inhibitors are known to affect the location of the iron-sulfur subunit cluster domain, the measured E(m) value of the [2Fe-2S] cluster therefore reflects its equilibrium position in the Q(o) site. We also demonstrate the existence in this site of a location where the E(m) of the cluster is increased by about 150 mV and discuss its possible implications in term of Q(o) site catalysis and energetics.  相似文献   

5.
Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing 相似文献   

6.
In this report we show that ubiquinone cytochrome c reductase (complex III) from isolated rat heart mitochondria when inhibited with antimycin A, produces a large amount of superoxide as measured by the chemiluminescent probe coelenterazine. When mitochondria are inhibited with myxothiazol or stigmatellin, there is no detectable formation of superoxide. The antimycin A-sensitive free radical production can be dramatically reduced using either myxothiazol or stigmatellin. This suggests that the antimycin A-sensitive generation of superoxides originates primarily from the Q(o) semiubiquinone. When manganese superoxide dismutase depleted submitochondrial particles (SMP) were inhibited with myxothiazol or stigmatellin, a large superoxide signal was observed. These two inhibitors likely increase the concentration of the Q(i) semiquinone at the N center. The antimycin A-sensitive signal can, in the case of both the mitochondria and the SMP, be dissipated by the addition of copper zinc superoxide dismutase, suggesting that the measured coelenterazine signal was a result of superoxide production. Taken together, this data suggests that free radicals generated from the Q(i) species are more effectively eliminated by MnSOD in intact mitochondria.  相似文献   

7.
Berry EA  Huang LS 《FEBS letters》2003,555(1):13-20
A direct hydrogen bond between ubiquinone/quinol bound at the QO site and a cluster-ligand histidine of the iron-sulfur protein (ISP) is described as a major determining factor explaining much experimental data on position of the ISP ectodomain, electron paramagnetic resonance (EPR) lineshape and midpoint potential of the iron-sulfur cluster, and the mechanism of the bifurcated electron transfer from ubiquinol to the high and low potential chains of the bc1 complex.  相似文献   

8.
D E Robertson  F Daldal  P L Dutton 《Biochemistry》1990,29(51):11249-11260
Seven single-site mutants in six residues of the cyt b polypeptide of Rhodobacter capsulatus selected for resistance to the Qo site inhibitors stigmatellin, myxothiazol, or mucidin [Daldal, F., Tokito, M.K., Davidson, E., & Faham, M. (1989) EMBO J. 8, 3951-3961] have been characterized by using optical and EPR spectroscopy and single-turnover kinetic analysis. The strains were compared with wild-type strain MT1131 and with the Ps- strain R126 (G158D), which is dysfunctional in its Qo site [Robertson, D.E., Davidson, E., Prince, R.C., van den Berg, W.H., Marrs, B.L., & Dutton, P.L. (1986) J. Biol. Chem. 261, 584-591]. Mutants selected for stigmatellin resistance induced a weakening in the binding of the inhibitor without discernible loss of ubiquinone(Q)/ubiquinol(QH2) binding affinity to the Qo site or kinetic impairment to catalysis. Mutants selected for myxothiazol or mucidin resistance, inducing weakening of inhibitor binding, all displayed impaired rates of Qo site catalysis: The most severe cases (F144L, F144S) displayed loss of affinity for Q, and evidence suggests that parallel loss of affinity for the substrate QH2 was incurred in these strains. The results provide a view of the nature of the interaction of Q and QH2 of the Qpool with the Qo site. Consideration of the mutational substitutions and their structural positions along with comparisons with the QA and QB sites of the photosynthetic reaction center suggests a model for the structure of the Qo site.  相似文献   

9.
Stigmatellin, a Q(P) site inhibitor, inhibits electron transfer from iron-sulfur protein (ISP) to cytochrome c1 in the bc1 complex. Stigmatellin raises the midpoint potential of ISP from 290 mV to 540 mV. The binding of stigmatellin to the fully oxidized complex, oxidized completely by catalytic amounts of cytochrome c oxidase and cytochrome c, results in ISP reduction. The extent of ISP reduction is proportional to the amount of inhibitor used and reaches a maximum when the ratio of inhibitor to enzyme complex reaches unity. A g = 2.005 EPR peak, characteristic of an organic free radical, is also observed when stigmatellin is added to the oxidized complex, and its signal intensity depends on the amount of stigmatellin. Addition of ferricyanide, a strong oxidant, to the oxidized complex also generates a g = 2.005 EPR peak that is oxidant concentration-dependent. Oxygen radicals are generated when stigmatellin is added to the oxidized complex in the absence of the exogenous substrate, ubiquinol. The amount of oxygen radical formed is proportional to the amount of stigmatellin added. Oxygen radicals are not generated when stigmatellin is added to a mutant bc1 complex lacking the Rieske iron-sulfur cluster. Based on these results, it is proposed that ISP becomes a strong oxidant upon stigmatellin binding, extracting electrons from an organic compound, likely an amino acid residue. This results in the reduction of ISP and generation of organic radicals.  相似文献   

10.
Although several X-ray structures have been determined for the mitochondrial cytochrome (cyt) bc(1) complex, none yet shows the position of the substrate, ubiquinol, in the quinol oxidase (Q(o)) site. In this study, the interaction of molecular oxygen with the reactive intermediate Q(o) semiquinone is used to probe the Q(o) site. It has been known for some time that partial turnover of the cyt bc(1) complex in the presence of antimycin A, a Q(i) site inhibitor, results in accumulation of a semiquinone at the Q(o) site, which can reduce O(2) to superoxide (O(2)(*)(-)). It was more recently shown that myxothiazol, which binds close to the cyt b(L) heme in the proximal Q(o) niche, also induces O(2)(*)(-) production. In this work, it is shown that, in addition to myxothiazol, a number of other proximal Q(o) inhibitors [including (E)-beta-methoxyacrylate-stilbene, mucidin, and famoxadone] also induce O(2)(*)(-) production in the isolated yeast cyt bc(1) complex, at approximately 50% of the V(max) observed in the presence of antimycin A. It is proposed that proximal Q(o) site inhibitors induce O(2)(*)(-) production because they allow formation, but not oxidation, of the semiquinone at the distal niche of the Q(o) site pocket. The apparent K(m) for ubiquinol at the Q(o) site in the presence of proximal Q(o) site inhibitors suggests that the "distal niche" of the Q(o) pocket can act as a fully independent quinol binding and oxidation site. Together with the X-ray structures, these results suggest substrate ubiquinol binds in a fashion similar to that of stigmatellin with H-bonds between H161 of the Rieske iron-sulfur protein and E272 of the cyt b protein. When modeled in this way, mucidin and ubiquinol can bind simultaneously to the Q(o) site with virtually no steric hindrance, whereas progressively bulkier inhibitors exhibit increasing overlap. The fact that partial turnover of the Q(o) site is possible even with bound proximal Q(o) site inhibitors is consistent with the participation of two separate functional Q(o) binding niches, occupied simultaneously or sequentially.  相似文献   

11.
Roberts AG  Bowman MK  Kramer DM 《Biochemistry》2004,43(24):7707-7716
Previously [Roberts, A. G., and Kramer, D. M. (2001) Biochemistry 40, 13407-13412], we showed that 2 equiv of the quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) could occupy the Q(o) site of the cytochrome (cyt) b(6)f complex simultaneously. In this work, a study of electron paramagnetic resonance (EPR) spectra from the oriented cyt b(6)f complex shows that the Rieske iron-sulfur protein (ISP) is in distinct orientations, depending on the stoichiometry of the inhibitor at the Q(o) site. With a single DBMIB at the Q(o) site, the ISP is oriented with the 2Fe-2S cluster toward cyt f, which is similar to the orientation of the ISP in the X-ray crystal structure of the cyt b(6)f complex from thermophilic cyanobacterium Mastigocladus laminosus in the presence of DBMIB, as well as that of the chicken mitochondrial cyt bc(1) complex in the presence of the class II inhibitor myxothiazol, which binds in the so-called "proximal niche", near the cyt b(L) heme. These data suggest that the high-affinity DBMIB site is at the proximal niche Q(o) pocket. With >or=2 equiv of DBMIB bound, the Rieske ISP is in a position that resembles the ISP(B) position of the chicken mitochondrial cyt bc(1) complex in the presence of stigmatellin and the Chlamydomonas reinhardtii cyt b(6)f complex in the presence of tridecylstigmatellin (TDS), which suggests that the low-affinity DBMIB site is at the distal niche. The close interaction of DBMIB bound at the distal niche with the ISP induced the well-known effects on the 2Fe-2S EPR spectrum and redox potential. To further test the effects of DBMIB on the ISP, the extents of cyt f oxidation after flash excitation in the presence of photosystem II inhibitor DCMU were measured as a function of DBMIB concentration in thylakoids. Addition of DBMIB concentrations at which a single binding was expected did not markedly affect the extent of cyt f oxidation, whereas higher concentrations, at which double occupancy was expected, increased the extent of cyt f oxidation to levels similar to that of cyt f oxidation in the presence of a saturating concentration of stigmatellin. Simulations of the EPR g-tensor orientations of the 2Fe-2S cluster versus the physical orientations based on single-crystal studies of the cyt bc(1) complex suggest that the soluble ISP domain of the spinach cyt b(6)f complex can rotate by at least 53 degrees, which is consistent with long-range ISP domain movement. Implications of these results are discussed in the context of the X-ray crystal structures of the chicken mitochondrial cyt bc(1) complex and the M. laminosus and C. reinhardtii cyt b(6)f complexes.  相似文献   

12.
The ubiquinone complement of Rhodobacter capsulatus chromatophore membranes has been characterized by its isooctane solvent extractability and electrochemistry; we find that the main ubiquinone pool (Qpool) amounts to about 80% of the total ubiquinone and has an Em7 value close to 90 mV. To investigate the interactions of ubiquinone with the cyt bc1 complex, we have examined the distinctive EPR line shapes of the [2Fe-2S] cluster of the cyt bc1 complex when the Qpool-cyt bc1 complex interactions are modulated by changing the numbers of Q or QH2 present (by solvent extraction and reconstitution), by the exposure of the [2Fe-2S] to the Qpool in different redox states, by the presence of inhibitors specific for the Qo site (myxothiazol and stigmatellin) and Qi site (antimycin), and by site-specific mutations of side chains of the cyt b polypeptide (mutants F144L and F144G) previously identified as important for Qo site structure. Evidence suggests that the Qo site can accommodate two ubiquinone molecules. One (designated Qos) is bound relatively strongly and is second only to the ubiquinone of the QA site of the reaction center in its resistance to solvent extraction. In this strong interaction, the Qo site binds Q and QH2 with approximately equal affinities. Their bound states are distinguished by their effects on the [2Fe-2S] cluster spectral feature at gx at 1.783 (Q) and gx at 1.777 (QH2); titration of the line-shape change reveals an Em7 value of approximately 95 mV. The other molecule (Qow) is bound more weakly, in the same range as the ubiquinone of the QB site of the reaction center. Again, the affinities of the Q form (gx at 1.800) and QH2 form (gx at 1.777) are nearly equal, and the Em7 value measured is approximately 80 mV. These results are discussed in terms of earlier EPR analyses of the cyt bc1 complexes of other systems. A Qo site double-occupancy model is considered that builds on the previous model based on Qo site mutants [Robertson, D. E., Daldal, F.,& Dutton, P. L. (1990) Biochemistry 29, 11249-11260] and includes the recent suggestion that two of the [2F3-2S] cluster ligands of the R. capsulatus cyt bc1 complex are histidines [Gurbiel, R. J. Ohnishi, T., Robertson, D. E. Daldal, F., & Hoffman, B. M. (1991) Biochemistry 30, 11579-11584]. We speculate that the cyt bc1 complex complexes a full enzymatic turnover without necessary exchange of ubiquinone with the Qpool.  相似文献   

13.
Interruption of electron flow at the quinone-reducing center (Q(i)) of complex III of the mitochondrial respiratory chain results in superoxide production. Unstable semiquinone bound in quinol-oxidizing center (Q(o)) of complex III is thought to be the sole source of electrons for oxygen reduction; however, the unambiguous evidence is lacking. We investigated the effects of complex III inhibitors antimycin, myxothiazol, and stigmatellin on generation of H(2)O(2) in rat heart and brain mitochondria. In the absence of antimycin A, myxothiazol stimulated H(2)O(2) production by mitochondria oxidizing malate, succinate, or alpha-glycerophosphate. Stigmatellin inhibited H(2)O(2) production induced by myxothiazol. Myxothiazol-induced H(2)O(2) production was dependent on the succinate/fumarate ratio but in a manner different from H(2)O(2) generation induced by antimycin A. We conclude that myxothiazol-induced H(2)O(2) originates from a site located in the complex III Q(o) center but different from the site of H(2)O(2) production inducible by antimycin A.  相似文献   

14.
The protonation state of residues around the Q(o) binding site of the cytochrome bc(1) complex from Paracoccus denitrificans and their interaction with bound quinone(s) was studied by a combined electrochemical and FTIR difference spectroscopic approach. Site-directed mutations of two groups of conserved residues were investigated: (a) acidic side chains located close to the surface and thought to participate in a water chain leading up to the heme b(L) edge, and (b) residues located in the vicinity of this site. Interestingly, most of the mutants retain a high degree of catalytic activity. E295Q, E81Q and Y297F showed reduced stigmatellin affinity. On the basis of electrochemically induced FTIR difference spectra, we suggest that E295 and D278 are protonated in the oxidized form or that their mutation perturbs protonated residues. Mutations Y302, Y297, E81 and E295, directly perturb signals from the oxidized quinone and of the protein backbone. By monitoring the interaction with the inhibitor stigmatellin for the wild-type enzyme at various redox states, interactions of the bound stigmatellin with amino acid side chains such as protonated acidic residues and the backbone were observed, as well as difference signals arising from the redox active inhibitor itself and the replaced quinone. The infrared difference spectra of the above Q(o) site mutations in the presence of stigmatellin confirm the previously established role of E295 as a direct interaction partner in the enzyme from P.denitrificans as well. The protonated residue E295 is proposed to change the hydrogen-bonding environment upon stigmatellin binding in the oxidized form, and is deprotonated in the reduced form. Of the residues located close to the surface, D278 remains protonated and unperturbed in the oxidized form but its frequency shifts in the reduced form. The mechanistic implications of our observations are discussed, together with previous inhibitor binding data, and referred to the published X-ray structures.  相似文献   

15.
The modified Q cycle mechanism accounts for the proton and charge translocation stoichiometry of the bc(1) complex, and is now widely accepted. However the mechanism by which the requisite bifurcation of electron flow at the Q(o) site reaction is enforced is not clear. One of several proposals involves conformational gating of the docking of the Rieske ISP at the Q(o) site, controlled by the stage of the reaction cycle. Effects of different Q(o)-site inhibitors on the position of the ISP seen in crystals may reflect the same conformational mechanism, in which case understanding how different inhibitors control the position of the ISP may be a key to understanding the enforcement of bifurcation at the Q(o) site (Table?1). Here we examine the available structures of cytochrome bc(1) with different Q(o)-site inhibitors and different ISP positions to look for clues to this mechanism. The effect of ISP removal on binding affinity of the inhibitors stigmatellin and famoxadone suggest a "mutual stabilization" of inhibitor binding and ISP docking, however this thermodynamic observation sheds little light on the mechanism. The cd(1) helix of cytochrome b moves in such a way as to accommodate docking when inhibitors favoring docking are bound, but it is impossible with the current structures to say whether this movement of α-cd(1) is a cause or result of ISP docking. One component of the movement of the linker between E and F helices also correlates with the type of inhibitor and ISP position, and seems to be related to the H-bonding pattern of Y279 of cytochrome b. An H-bond from Y279 to the ISP, and its possible modulation by movement of F275 in the presence of famoxadone and related inhibitors, or its competition with an alternate H-bond to I269 of cytochrome b that may be destabilized by bound famoxadone, suggest other possible mechanisms. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

16.
The role of the protein environment in determining the redox midpoint potential (E(m)) of Q(A), the primary quinone of bacterial reaction centers, was investigated by mutation of isoleucine at position 265 of the M subunit in Rhodobacter sphaeroides. Isoleucine was changed to threonine, serine, and valine, yielding mutants M265IT, M265IS, and M265IV, respectively. All three mutants, with smaller residues replacing isoleucine, exhibited decreased binding affinities of the Q(A) site for various quinone analogues, consistent with an enlargement or loosening of the headgroup binding domain and a decrease in the van der Waals contact for small quinones. In all other respects, M265IV was like the wild type, but the polar mutants, M265IT and M265IS, had unexpectedly dramatic decreases in the redox midpoint potential of Q(A), resulting in faster rates of P(+)Q(A)(-) charge recombination. For both anthraquinone and native ubiquinone, the in situ E(m) of Q(A) was estimated to be approximately 100 and 85 mV lower in M265IT and M265IS, respectively. The effect on E(m)(Q(A)) indicates destabilization of the semiquinone or stabilization of the quinone. This is suggested to arise from either (i) electrostatic interaction between the partial charges or dipole of the residue hydroxyl group and the charge distribution of quinone and semiquinone states with particular influence near the C4 carbonyl group or (ii) from hydrogen bonding interactions between the hydroxyl oxygen and the N(delta)H of histidine M219, causing a weakening of the hydrogen bond to the C4 carbonyl. The rate of the first electron transfer (k(AB)(()(1)())) in the polar mutants was the same as in the wild type at low pH but decelerated at higher pH with altered pH dependence. The rate of the second electron transfer (k(AB)(()(2)())) was 3-4-fold greater than in the wild type over the whole pH range from 4 to 11, consistent with a larger driving force for electron transfer derived from the lower E(m) of Q(A).  相似文献   

17.
To determine the effect of the redox state of the Rieske protein on ligand binding to the quinol oxidation site of the bc(1) complex, we measured the binding rate constants (k(1)) for stigmatellin and myxothiazol, at different concentrations of decylbenzoquinone or decylbenzoquinol, in the bovine bc(1) complex with the Rieske protein in the oxidized or reduced state. Stigmatellin and myxothiazol bound tightly and competitively with respect to quinone or quinol, independently of the redox state of the Rieske protein. In the oxidized bc(1) complex, the k(1) values for stigmatellin ( approximately 2.6 x 10(6) m(-1)s(-1)) and myxothiazol ( approximately 8 x 10(5) m(-1)s(-1)), and the dissociation constant (K(d)) for quinone, were similar between pH 6.5 and 9, indicating that ligand binding is independent of the protonation state of histidine 161 of the Rieske protein (pK(a) approximately 7.6). Reduction of the Rieske protein increased the k(1) value for stigmatellin and decreased the K(d) value for quinone by 50%, without modifying the k(1) for myxothiazol. These results indicate that reduction of the Rieske protein and protonation of histidine 161 do not induce a strong stabilization of ligand binding to the quinol oxidation site, as assumed in models that propose the existence of a highly stabilized semiquinone as a reaction intermediate during quinol oxidation.  相似文献   

18.
Ginet N  Lavergne J 《Biochemistry》2000,39(51):16252-16262
The apparent equilibrium constant K'(2) for electron transfer between the primary (Q(A)) and secondary (Q(B)) quinone acceptors of the reaction center was measured in chromatophores of Rhodobacter capsulatus. In the presence of the oxidized primary donor P(+), we obtained a value of K'(2)(P(+)) approximately 100 at pH 7.2, based on the rates of recombination from P(+)Q(A-) and P(+)Q(B-). K'(2) was also measured in the presence of reduced P, from the damping of semiquinone oscillations during a series of single turnover flashes. A 5-fold smaller value, K'(2)(P) approximately 20, was found. Additional information on the interactions between the donor and acceptor sides was obtained by measuring the shift of the midpoint potential of P caused by the presence of Q(B-) or Q(A-)S (where S indicates the presence of the inhibitor stigmatellin). A stabilization of the oxidized state P(+) was observed in both instances, by 10 mV for Q(B-) and 30 mV for Q(A-)S. The larger stabilization of P(+)Q(A-)S with respect to P(+)Q(B-) does not account for the effect of P(+)/P on K'(2). Analysis of these results indicates that the interactions between P(+)/P and Q(A)/Q(A)(-) are markedly modified depending on the occupancy of the Q(B) pocket by ubiquinone or by stigmatellin. We propose that the large value of K'(2)(P(+)) results essentially from a conformational destabilization of the P(+)Q(A-) state, that is relieved when the proximal site of the Q(B) pocket is occupied by stigmatellin.  相似文献   

19.
Wenz T  Hellwig P  MacMillan F  Meunier B  Hunte C 《Biochemistry》2006,45(30):9042-9052
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of complex III catalysis, but the molecular basis of this process is still not clear. E272 of the conserved cytochrome b PEWY motif has been suggested as a ligand and proton acceptor for ubiquinol oxidation at center P. We introduced the two replacement mutations, E272D and E272Q, into the mitochondrially encoded cytochrome b gene by biolistic transformation to study their effects on substrate binding and catalysis. Both substitutions resulted in a lower ubiquinol cytochrome c reductase activity and affect the KM for ubiquinol. The E272 carboxylate stabilizes stigmatellin binding, and in accordance, both variants are resistant to stigmatellin. Large structural changes in the cofactor environment as well as in the binding pocket can be excluded. The mutations do not perturb the midpoint potentials of the heme groups. The sensitivity toward the respective distal and proximal niche inhibitors HDBT and myxothiazol is retained. However, both mutations provoke subtle structural alterations detected by redox FTIR. They affect binding and oxidation of ubiquinol, and they promote electron short-circuit reactions resulting in production of reactive oxygen species. The aspartate substitution modifies the environment of the reduced Rieske protein as monitored by EPR. Both variants alter the pH dependence of the enzyme activity. Diminished activity at low pH coincides with the loss of one protonatable group with a pKa of approximately 6.2 compared to three pKa values in the wild type, supporting the role of E272 in proton transfer. The conserved glutamate appears to influence the accurate formation of the enzyme-substrate complex and to govern the efficiency of catalysis.  相似文献   

20.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号