首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLUXNET and modelling the global carbon cycle   总被引:3,自引:0,他引:3  
Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model‐data comparison. Flux measurements made over four vegetation types were used to calibrate the land‐surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land‐surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite‐measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of −1.2 Pg [C] yr−1 for 1982–1995 is compatible with the PEM‐ and DGVM‐predicted trends in NPP. There is, thus, a convergence in understanding derived from process‐based models, remote‐sensing‐based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night‐time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land‐atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.  相似文献   

2.
3.
The assumption that landscapes dominated by mature vegetation are presently in carbon steady state with the atmosphere is challenged. Evidence suggests that the vegetation and soils of these landscapes are frequently disturbed and over short time periods (<300 yr) slowly sequester atmospheric carbon. The critical consideration in this argument is the time interval used to evaluate a steady state. Current models of carbon flux through the terrestrial biota limit their time considerations to 120 yr, a short and inadequate time interval for realistic assumptions about steady state in the carbon cycle of vegetation.Research performed under subcontract 19B-07762C with S. Brown and 19X-43326C with the Center for Energy and Environment Research of the University of Puerto Rico (A. E. Lugo) under Martin Marietta Energy Systems, Inc., contract DE-AC05-840R21400 with the U.S. Department of Energy.  相似文献   

4.
5.
Soil respiration of forest ecosystems in Japan and global implications   总被引:3,自引:0,他引:3  
Within terrestrial ecosystems, soil respiration is one of the largest carbon flux components. We discuss the factors controlling soil respiration, while focusing on research conducted at the Takayama Experimental Site. Soil respiration was affected by soil temperature, soil moisture, rainfall events, typhoons, and root respiration. We consider the temporal and spatial variability of soil respiration at the Takayama Experimental Site and review the variability of annual soil respiration in Japanese forests. In the 26 compiled studies, the values of annual soil respiration ranged from 203 to 1,290 g C m−2 year−1, with a mean value of 669 g C m−2 year−1 (SD=264, CV=40). We note the need for more studies and data synthesis for the accurate prediction of soil respiration and soil carbon dynamics in Japanese forests. Finally, several methods for measuring soil respiration rates are compared and the implications of soil respiration rates for global climate change are discussed.  相似文献   

6.
Results of measurements and calculations of carbon budget parameters of forests and swamps of Siberia are reported. The zonal variability of reserves (and an increment in reserves) of carbon in forest and swamp ecosystems is characterized, carbon dioxide fluxes are measured directly by means of microeddy pulsations, and an uncertainty brought into the calculation of carbon budget parameters by forest fires is estimated.  相似文献   

7.
8.
In this review, we propose a new framework, dynamic disequilibrium of the carbon cycles, to assess future land carbon-sink dynamics. The framework recognizes internal ecosystem processes that drive the carbon cycle toward equilibrium, such as donor pool-dominated transfer; and external forces that create disequilibrium, such as disturbances and global change. Dynamic disequilibrium within one disturbance-recovery episode causes temporal changes in the carbon source and sink at yearly and decadal scales, but has no impacts on longer-term carbon sequestration unless disturbance regimes shift. Such shifts can result in long-term regional carbon loss or gain and be quantified by stochastic statistics for use in prognostic modeling. If the regime shifts result in ecosystem state changes in regions with large carbon reserves at risk, the global carbon cycle might be destabilized.  相似文献   

9.
Land use change and the global carbon cycle: the role of tropical soils   总被引:31,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

10.
Cryoconite holes, which can cover 0.1–10% of the surface area of glaciers, are small, water-filled depressions (typically <1 m in diameter and usually <0.5 m deep) that form on the surface of glaciers when solar-heated inorganic and organic debris melts into the ice. Recent studies show that cryoconites are colonized by a diverse range of microorganisms, including viruses, bacteria and algae. Whether microbial communities on the surface of glaciers are actively influencing biogeochemical cycles or are just present in a dormant state has been a matter of debate for long time. Here, we report primary production and community respiration of cryoconite holes upon glaciers in Svalbard, Greenland and the European Alps. Microbial activity in cryoconite holes is high despite maximum temperatures seldom exceeding 0.1 °C. In situ primary production and respiration in cryoconites during the summer is often comparable with that found in soils in warmer and nutrient richer regions. Considering only glacier areas outside Antarctica and a conservative average cryoconite distribution on glacial surfaces, we found that on a global basis cryoconite holes have the potential to fix as much as 64 Gg of carbon per year (i.e. 98 Gg of photosynthesis minus 34 Gg of community respiration). Most lakes and rivers are generally considered as heterotrophic systems, but our results suggest that glaciers, which contain 75% of the freshwater of the planet, are largely autotrophic systems.  相似文献   

11.
12.
Summary CO2 efflux from tussock tundra in Alaska that had been exposed to elevated CO2 for 2.5 growing seasons was measured to assess the effect of long- and short-term CO2 enrichment on soil respiration. Long-term treatments were: 348, 514, and 683 μll−1 CO2 and 680 μll−1 CO2+4°C above ambient. Measurements were made at 5 CO2 concentrations between 87 and 680 μll−1 CO2. Neither long- or short-term CO2 enrichment significantly affected soil CO2 efflux. Tundra developed at elevated temperature and 680 μll−1 CO2 had slightly higher, but not statistically different, mean respiration rates compared to untreated tundra and to tundra under CO2 control alone.  相似文献   

13.
Pregitzer K  Loya W  Kubiske M  Zak D 《Oecologia》2006,148(3):503-516
The aspen free-air CO2 and O3 enrichment (FACTS II–FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8–26%) compared to the control treatment in both community types over all three growing seasons. In years 6–7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15–25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60–80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4–6‰ enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil respiration that was temporarily 4–6‰ more depleted in 13C. Up to 50% of the Earth’s forests will see elevated concentrations of both CO2 and O3 in the coming decades and these interacting atmospheric trace gases stimulated soil respiration in this study.  相似文献   

14.
From 1999 to 2003, a range of carbon fluxes was measured and integrated to establish a carbon balance for a natural evergreen forest of Castanopsis kawakamii (NF) and adjacent monoculture evergreen plantations of C. kawakamii (CK) and Chinese fir (Cunninghamia lanceolata, CF) in Sanming Nature Reserve, Fujian, China. Biomass carbon increment of aboveground parts and coarse roots were measured by the allometric method. Above- and belowground litter C inputs were assessed by litter traps and sequential cores, respectively. Soil respiration (SR) was determined by the alkaline absorbance method, and the contribution from roots, above- and belowground litters was separated by the DIRT plots. Annual SR averaged 13.742 t C ha−1 a−1 in the NF, 9.439 t C ha−1 a−1 in the CK, and 4.543 t C ha−1 a−1 in the CF. For all forests, SR generally peaked in later spring or early summer (May or June). The contribution of root respiration ranged from 47.8% in the NF to 40.3% in the CF. On average, soil heterotrophic respiration (HR) was evenly distributed between below- (47.3∼54.5%) and aboveground litter (45.5%–52.7%). Annual C inputs (t C ha−1 a−1) from litterfall and root turnover averaged 4.452 and 4.295, 4.548 and 2.313, and 2.220 and 1.265, respectively, in the NF, CK, and CF. As compared to HR, annual net primary production (NPP) of 11.228, 13.264, and 6.491 t C ha−1 a−1 in the NF, CK, and CF brought a positive net ecosystem production (NEP) of 4.144, 7.514, and 3.677 t C ha−1 a−1, respectively. It suggests that native forest in subtropical China currently acts as an important carbon sink just as the timber plantation does, and converting native forest to tree plantations locally during last decades might have caused a high landscape carbon loss to the atmosphere.  相似文献   

15.
The remaining carbon stocks in wet tropical forests are currently at risk because of anthropogenic deforestation, but also because of the possibility of release driven by climate change. To identify the relative roles of CO2 increase, changing temperature and rainfall, and deforestation in the future, and the magnitude of their impact on atmospheric CO2 concentrations, we have applied a dynamic global vegetation model, using multiple scenarios of tropical deforestation (extrapolated from two estimates of current rates) and multiple scenarios of changing climate (derived from four independent offline general circulation model simulations). Results show that deforestation will probably produce large losses of carbon, despite the uncertainty about the deforestation rates. Some climate models produce additional large fluxes due to increased drought stress caused by rising temperature and decreasing rainfall. One climate model, however, produces an additional carbon sink. Taken together, our estimates of additional carbon emissions during the twenty-first century, for all climate and deforestation scenarios, range from 101 to 367 Gt C, resulting in CO2 concentration increases above background values between 29 and 129 p.p.m. An evaluation of the method indicates that better estimates of tropical carbon sources and sinks require improved assessments of current and future deforestation, and more consistent precipitation scenarios from climate models. Notwithstanding the uncertainties, continued tropical deforestation will most certainly play a very large role in the build-up of future greenhouse gas concentrations.  相似文献   

16.
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.  相似文献   

17.
18.
Results of comparative analysis of turnover times and the capacity of major global pools of organic carbon are presented; the place of photosynthetic carbon sequestration is defined; concept of its catalytic role in the regulation of the organic branch of the global carbon cycle is ground. Concept of reservoir-flux model of photosynthetic carbon sequestration and of the net photosynthetic production at the territory of Northern Eurasia is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 81–89.Original Russian Text Copyright © 2005 by Voronin, Black.  相似文献   

19.
Plant and Soil - Efflux of soil CO2 (soil respiration) plays a crucial role in the global carbon cycle and may be strongly altered by global change. In this study, we measured soil respiration in...  相似文献   

20.
《Current biology : CB》2014,24(13):R583-R585
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号