首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing cells acquire positional information by reading the graded distribution of morphogens. In Drosophila, the Dpp morphogen forms a long-range concentration gradient by spreading from a restricted source in the developing wing. It has been assumed that Dpp spreads by extracellular diffusion. Under this assumption, the main role of endocytosis in gradient formation is to downregulate receptors at the cell surface. These surface receptors bind to the ligand and thereby interfere with its long-range movement. Recent experiments indicate that Dpp spreading is mediated by Dynamin-dependent endocytosis in the target tissue, suggesting that extracellular diffusion alone cannot account for Dpp dispersal. Here, we perform a theoretical study of a model for morphogen spreading based on extracellular diffusion, which takes into account receptor binding and trafficking. We compare profiles of ligand and surface receptors obtained in this model with experimental data. To this end, we monitored directly the pool of surface receptors and extracellular Dpp with specific antibodies. We conclude that current models considering pure extracellular diffusion cannot explain the observed role of endocytosis during Dpp long-range movement.  相似文献   

2.
The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.  相似文献   

3.
BACKGROUND: Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS: A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS: The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.  相似文献   

4.
Gradient formation of the TGF-beta homolog Dpp   总被引:17,自引:0,他引:17  
Secreted morphogens such as the Drosophila TGF-beta homolog Decapentaplegic (Dpp) are thought to spread through target tissues and form long-range concentration gradients providing positional information. Using a GFP-Dpp fusion, we monitored a TGF-beta family member trafficking in situ throughout the target tissue and forming a long-range concentration gradient. Evidence is presented that long-range Dpp movement involves Dpp receptor and Dynamin functions. We also show that the rates of endocytic trafficking and degradation determine Dpp signaling range. We propose a model where the gradient is formed via intracellular trafficking initiated by receptor-mediated endocytosis of the ligand in receiving cells with the gradient slope controlled by endocytic sorting of Dpp toward recycling versus degradation.  相似文献   

5.
Erickson JL 《Fly》2011,5(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their ability to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imperative to the two central themes in gradient formation: active transport facilitating long-range signaling and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane-mediated processes of re-secretion, degradation and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

6.
《Fly》2013,7(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their abilty to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imparative to the two central themes in gradient formation; active transport facilitating long-range signalling, and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane mediated processes of re-secretion, degradation, and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

7.
Pattern formation along the anterior-posterior (A/P) axis of the developing Drosophila wing depends on Decapentaplegic (Dpp), a member of the conserved transforming growth factor beta (TGFbeta) family of secreted proteins. Dpp is expressed in a stripe along the A/P compartment boundary of the wing imaginal disc and forms a long-range concentration gradient with morphogen-like properties which generates distinct cell fates along the A/P axis. We have monitored Dpp expression and Dpp signalling in endocytosis-mutant wing imaginal discs which develop severe pattern defects specifically along the A/P wing axis. The results show that the size of the Dpp expression domain is expanded in endocytosis-mutant wing discs. However, this expansion did not result in a concomitant expansion of the functional range of Dpp activity but rather its reduction as indicated by the reduced expression domain of the Dpp target gene spalt. The data suggest that clathrin-mediated endocytosis, a cellular process necessary for membrane recycling and vesicular trafficking, participates in Dpp action during wing development. Genetic interaction studies suggest a link between the Dpp receptors and clathrin. Impaired endocytosis does not interfere with the reception of the Dpp signal or the intracellular processing of the mediation of the signal in the responder cells, but rather affects the secretion and/or the distribution of Dpp in the developing wing cells.  相似文献   

8.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

9.
10.
11.
Wing patterning in Drosophila requires a Bmp activity gradient created by two Bmp ligands, Gbb and Dpp, and two Bmp type I receptors, Sax and Tkv. Gbb provides long-range signaling, while Dpp signals preferentially to cells near its source along the anteroposterior (AP) boundary of the wing disc. How each receptor contributes to the signaling activity of each ligand is not well understood. Here, we show that while Tkv mediates signals from both Dpp and Gbb, Sax exhibits a novel function for a Bmp type I receptor: the ability to both promote and antagonize signaling. Given its high affinity for Gbb, this dual function of Sax impacts the function of Gbb in the Bmp activity gradient more profoundly than does Dpp. We propose that this dual function of Sax is dependent on its receptor partner. When complexed with Tkv, Sax facilitates Bmp signaling, but when alone, Sax fails to signal effectively and sequesters Gbb. Overall, our model proposes that the balance between antagonizing and promoting Bmp signaling varies across the wing pouch, modulating the level and effective range, and, thus, shaping the Bmp activity gradient. This previously unknown mechanism for modulating ligand availability and range raises important questions regarding the function of vertebrate Sax orthologs.  相似文献   

12.
Decapentaplegic (Dpp), a Drosophila homologue of bone morphogenetic proteins, acts as a morphogen to regulate patterning along the anterior-posterior axis of the developing wing. Previous studies showed that Dally, a heparan sulfate proteoglycan, regulates both the distribution of Dpp morphogen and cellular responses to Dpp. However, the molecular mechanism by which Dally affects the Dpp morphogen gradient remains to be elucidated. Here, we characterized activity, stability, and gradient formation of a truncated form of Dpp (DppΔN), which lacks a short domain at the N-terminus essential for its interaction with Dally. DppΔN shows the same signaling activity and protein stability as wild-type Dpp in vitro but has a shorter half-life in vivo, suggesting that Dally stabilizes Dpp in the extracellular matrix. Furthermore, genetic interaction experiments revealed that Dally antagonizes the effect of Thickveins (Tkv; a Dpp type I receptor) on Dpp signaling. Given that Tkv can downregulate Dpp signaling by receptor-mediated endocytosis of Dpp, the ability of dally to antagonize tkv suggests that Dally inhibits this process. Based on these observations, we propose a model in which Dally regulates Dpp distribution and signaling by disrupting receptor-mediated internalization and degradation of the Dpp-receptor complex.  相似文献   

13.
Morphogens are secreted signalling molecules that govern many developmental processes. In the Drosophila wing disc, the transforming growth factor beta (TGFbeta) homologue Decapentaplegic (Dpp) forms a smooth gradient and specifies cell fate by conferring a defined value of morphogen activity. Thus, neighbouring cells have similar amounts of Dpp protein, and if a sharp discontinuity in Dpp activity is generated between these cells, Jun kinase (JNK)-dependent apoptosis is triggered to restore graded positional information. To date, it has been assumed that this apoptotic process is only activated when normal signalling is distorted. However, we now show that a similar process occurs during normal development: rupture in Dpp activity occurs during normal segmentation of the distal legs of Drosophila. This sharp boundary of Dpp signalling, independently of the absolute level of Dpp activity, induces a JNK-reaper-dependent apoptosis required for the morphogenesis of a particular structure of the leg, the joint. Our results show that Dpp could induce a developmental programme not only in a concentration dependent manner, but also by the creation of a sharp boundary of Dpp activity. Furthermore, the same process could be used either to restore a normal pattern in response to artificial disturbance or to direct a morphogenetic process.  相似文献   

14.
15.
Shimmi O  Umulis D  Othmer H  O'Connor MB 《Cell》2005,120(6):873-886
Patterning the dorsal surface of the Drosophila blastoderm embryo requires Decapentaplegic (Dpp) and Screw (Scw), two BMP family members. Signaling by these ligands is regulated at the extracellular level by the BMP binding proteins Sog and Tsg. We demonstrate that Tsg and Sog play essential roles in transporting Dpp to the dorsal-most cells. Furthermore, we provide biochemical and genetic evidence that a heterodimer of Dpp and Scw, but not the Dpp homodimer, is the primary transported ligand and that the heterodimer signals synergistically through the two type I BMP receptors Tkv and Sax. We propose that the use of broadly distributed Dpp homodimers and spatially restricted Dpp/Scw heterodimers produces the biphasic signal that is responsible for specifying the two dorsal tissue types. Finally, we demonstrate mathematically that heterodimer levels can be less sensitive to changes in gene dosage than homodimers, thereby providing further selective advantage for using heterodimers as morphogens.  相似文献   

16.
Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here, we systematically analyzed the roles of glypicans Dally and Dally-like protein (Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow (Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise, although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.  相似文献   

17.
Heparan sulfate proteoglycans (HSPG) have been implicated in regulating the signalling activities of secreted morphogen molecules including Wingless (Wg), Hedgehog (Hh) and Decapentaplegic (Dpp). HSPG consists of a protein core to which heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. The formation of HS GAG chains is catalyzed by glycosyltransferases encoded by members of the EXT family of putative tumor suppressors linked to hereditary multiple exostoses. Previous studies in Drosophila demonstrated that tout-velu (ttv), the Drosophila EXT1, is required for Hh movement. However, the functions of other EXT family members are unknown. We have identified and isolated the other two members of the Drosophila EXT family genes, which are named sister of tout-velu (sotv) and brother of tout-velu (botv), and encode Drosophila homologues of vertebrate EXT2 and EXT-like 3 (EXTL3), respectively. We show that both Hh and Dpp signalling activities, as well as their morphogen distributions, are defective in cells mutant for ttv, sotv or botv in the wing disc. Surprisingly, although Wg morphogen distribution is abnormal in ttv, sotv and botv, Wg signalling is only defective in botv mutants or ttv-sotv double mutants, and not in ttv nor sotv alone, suggesting that Ttv and Sotv are redundant in Wg signalling. We demonstrate further that Ttv and Sotv form a complex and are co-localized in vivo. Our results, along with previous studies on Ttv, provide evidence that all three Drosophila EXT proteins are required for the biosynthesis of HSPGs, and for the gradient formation of the Wg, Hh and Dpp morphogens. Our results also suggest that HSPGs have two distinct roles in Wg morphogen distribution and signalling.  相似文献   

18.
Drosophila kayak mutant embryos exhibit defects in dorsal closure, a morphogenetic cell sheet movement during embryogenesis. Here we show that kayak encodes D-Fos, the Drosophila homologue of the mammalian proto-oncogene product, c-Fos. D-Fos is shown to act in a similar manner to Drosophila Jun: in the cells of the leading edge it is required for the expression of the TGFbeta-like Decapentaplegic (Dpp) protein, which is believed to control the cell shape changes that take place during dorsal closure. Defects observed in mutant embryos, and adults with reduced Fos expression, are reminiscent of phenotypes caused by 'loss of function' mutations in the Drosophila JNKK homologue, hemipterous. These results indicate that D-Fos is required downstream of the Drosophila JNK signal transduction pathway, consistent with a role in heterodimerization with D-Jun, to activate downstream targets such as dpp.  相似文献   

19.
In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian-Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues.  相似文献   

20.
During development, diffusible ligands, known as morphogens, are thought to move across fields of cells, regulating gene expression in a concentration dependent manner. The case for morphogens has been convincingly made for the Decapentapleigic (Dpp), Wingless (Wg) and Hedgehog (Hh) proteins in the Drosophila wing. In each case, the concentration of the morphogen's receptor plays an important role in shaping the morphogen gradient, through influencing ligand transport and/or stability. However, the relationships between each ligand/receptor pair are different. The role of heparan sulfated proteoglycans, endocytosis and novel exovesicles called argosomes in regulating morphogen distribution will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号