首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results from the Women's Health Initiative study on enhanced breast cancer risk in postmenopausal women using an estrogen/progestin combination clearly indicate the need for a comparison of different progestins with regard to cancer risk. To shed some light on this issue, we have investigated the influence of progesterone and various synthetic C19- and C21-progestins on cell proliferation of a human breast cancer cell line in vitro. Of special interested was the comparison of two different regimens commonly used in HRT, sequential and continuous combination with estradiol. We used the human breast cancer cell line MCF-7 as a model. Progesterone (P), chlormadinone acetate (CMA), dienogest (DNG), gestodene (GSD), 3-ketodesogestrel (KDG), levonorgestrel (LNG), medroxyprogesterone acetate (MPA), and norethisterone (NET) were investigated in the range of 0.01nm to 10 micro M alone and in combination with 10 nM estradiol. Cell proliferation was measured after 7 days using the ATP chemosensitivity test. Tested alone, CMA, DNG, GSD, KDG, MPA and NET significantly stimulated cell proliferation, but only at high dosages. Sequentially combined with estradiol, only CMA inhibited cell proliferation over the whole concentration range. Slight effects were found for DNG, GSD and KDG, whereas P and MPA only showed an effect at the highest concentration. NET had no significant effect on cell proliferation. Continuously combined, all progestins exhibited an inhibitory effect over the whole concentration range. The most prominent effects were found for P, CMA, GSD, and KDG. Only slight effects were found for DNG, MPA and NET. Our in vitro results indicate that the influence on breast cancer risk using HRT in postmenopausal women might depend on the type of progestin used as well as on the regimen applied. However, the net inhibitory in vitro effect of the progestins at clinically relevant dosages is rather minimal, and whether progestins in general can reduce breast cancer risk in long-term treatment remains uncertain. Further clinical trials are urgently needed to clarify this issue.  相似文献   

2.
Marked changes in both growth factor and proto-oncogene expression occur due to treatment of hormonally-responsive human cancers with progestins and antiestrogens. In human endometrial cancer cell lines the antiproliferative effects of progestins and antiestrogens in a particular cell line appear to be associated with similar effects on growth factor and/or proto-oncogene expression. This suggests that although these compounds initially interact with different steroid hormone receptors, the molecular mechanisms of their growth inhibition may be essentially similar. In the case of human breast cancer cell lines, however, the effects of progestins and antiestrogens on gene regulation are often different, suggesting that the molecular mechanisms of progestin and antiestrogen growth inhibition may be essentially dissimilar.  相似文献   

3.
目的通过构建间充质干细胞(MSC)与乳腺癌细胞间相互作用的共培养模型,探讨MSC对乳腺癌细胞生长的影响。方法用含荧光基因第三代自身失活慢病毒载体感染人类脐带分离提取的MSC和乳腺癌细胞MDA-MB-231、MCF-7,以单独培养的乳腺癌细胞MDA-MB-231和MCF-7分别设立对照,2种乳腺癌细胞分别与MSC共培养,检测乳腺癌细胞在MSC作用下增生能力的改变,流式细胞术检测共培养后细胞表面标记物表达。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,多重比较采用Dunnet-t检验。结果MSC在与乳腺癌细胞共培养过程中促进肿瘤细胞生长,第3天共培养组乳腺癌MDA-MB-231细胞数高于单独MDA-MB-231培养组[(5.50±0.71)×10^3个比(1.63±0.41)×10^3个],培养至第7天,两组间MDA-MB-231细胞数差异进一步增大[(81.25±7.40)×10^3个比(26.25±4.15)×10^3个],差异具有统计学意义(P均<0.001);共培养后MSC促进乳腺癌细胞表达干细胞特有标记物CD90,MCF-7从共培养第2天CD90表达率(1.38±0.30)﹪升高至第9天(92.45±2.04)﹪。在共培养中MSC围绕肿瘤细胞集落方式生长,在形态上变长,并发现一种新型混合细胞(hybrid融合细胞)同时表达绿色和红色荧光,且对化疗药物更敏感。结论MSC促进乳腺癌细胞的生长,伴随MSC形态学改变和hybrid融合细胞出现,乳腺癌细胞获得MSC特有CD90表达。  相似文献   

4.
The cooperative action of 17 beta-estradiol (E2) and polypeptide growth factors in stimulating proliferation of human breast cancer cells in vitro was investigated. To prevent background estrogenic stimulation, only phenol red-free media were used. When cultured in media supplemented with steroid-stripped serum in which all polypeptide growth factor activity had been chemically inactivated, MCF7 cells were unable to proliferate and became virtually quiescent. In the additional presence of insulin, epidermal growth factor (EGF), and E2, however, cells proliferated as rapidly as did cells cultured in media supplemented with fetal calf serum. Analysis by DNA flow cytometry showed that in the absence of external growth factors, MCF7 cells became arrested predominantly in the G1/G0 phase of the cell cycle. Upon addition of insulin in combination with EGF and E2, however, cells reentered the cell cycle with a high degree of synchrony. When added alone, E2 induced only slight mitogenic effects under these growth factor-defined conditions. In contrast, this steroid induced optimal proliferation in conventional steroid-stripped serum, which in itself contained considerable mitogenic activity. Insulin (at 10 micrograms/ml) was the most potent stimulator of MCF7 cell proliferation under growth factor-defined conditions, resulting in a more than sixfold increase in cell number after 96 hours. Other growth factors such as platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and EGF had little effect by themselves and only slightly influenced insulin-induced proliferation. At suboptimal concentrations of insulin (10-100 ng/ml), however, strong synergism was observed between E2 and insulin in inducing MCF7 proliferation. Using the CG5 cell line, a highly E2-sensitive MCF7 variant, synergism with E2 was already observed at 1 ng/ml insulin. It is concluded that MCF7 cells require insulin (or insulin-like growth factors) for proliferation. At suboptimal insulin concentrations, E2 acts synergistically with insulin, possibly by inducing autocrine production of polypeptide growth factors by these cells.  相似文献   

5.
6.
17 beta-Estradiol is a potent mitogen for hormone-dependent cell lines (MCF-7, T47D and ZR 75.1). However, the degree of hormone sensitivity is very much influenced by culture conditions. In order to understand which factors modulate estrogenic effects on cell growth, four different culture conditions were used: (a) medium with dextran-coated charcoal-treated fetal calf serum (DCC-FCS); (b) medium with dextran-coated charcoal-treated growth factor-inactivated serum (DCC-FCSd); (c) serum-free medium, after a 24-h incubation with serum to allow cell attachment; and (d) serum-free medium on collagen IV-treated plates. In all cell lines the highest cell growth stimulation was achieved when estradiol was added in the presence of 5% DCC-FCS, whereas reducing or removing serum from the culture medium resulted in a decrease in cell proliferation stimulation. We postulate that serum contains some still unknown components able to modulate the degree of estrogenic action in endocrine-dependent breast cancer cell lines.  相似文献   

7.
A 24 hr incubation of T-47D human breast cancer cells with R5020, a synthetic progestin, resulted in a 200-250% increase in the specific binding of human growth hormone (hGH) and epidermal growth factor (EGF) by these cells. This effect was specific for progestins in that similar responses were observed with progesterone, medroxyprogesterone acetate and ORG 2058 but no significant increases in hGH or EGF binding were observed in cells incubated with testosterone, estradiol or hydrocortisone. Increased binding was due to an increase in the concentration of receptors (hGH, control = 6,490 +/- 500, progestin treated = 13,180 +/- 3,270 sites/cell; EGF, control = 33,380 +/- 7,410, progestin treated = 67,460 +/- 20,330 sites/cell) while the affinity constants for the hormone-receptor interactions were unchanged by progestin treatment. The specific binding of insulin, calcitonin, transferrin and concanavalin A was unaffected by these treatments. It is concluded that expression of hGH and EGF receptors in this breast cancer cell line is regulated by progestins.  相似文献   

8.
To investigate further the molecular mechanisms of progestin regulation of human breast cancer cell growth, we studied the effect of progestins on expression of the protooncogene c-jun and other members of the jun family, jun-B and jun-D, in T-47D human breast cancer cells. The progestin medroxyprogesterone acetate (MPA) increased c-jun mRNA levels in a time- and dose-dependent fashion. Maximal effects were seen after 3 h of treatment with 10-100 nM MPA. Under these conditions, the c-jun mRNA was increased 5.4-fold above the control level. Although the c-jun mRNA level was increased by cycloheximide alone, a further 2.4-fold increase was seen when the cells were treated with MPA in the presence of cycloheximide. The p39 c-jun protein was also increased 3.8-fold by this treatment. Maximum levels of p39 c-jun protein were achieved 9 h after treatment, and this level was maintained for at least 24 h. Dexamethasone and dihydrotestosterone did not increase the p39 c-jun protein level under these conditions. However, MPA treatment of T-47D cells resulted in a 55% decrease in overall AP-1 activity, as measured by transient transfection of an AP-1-regulated chloramphenicol acetyltransferase reporter gene. These effects were all reversible by cotreatment with a 10-fold higher concentration of the antiprogestin RU 486. MPA decreased jun-B mRNA levels 50% 1 h after treatment in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Effects of thyroid hormones on human breast cancer cell proliferation   总被引:1,自引:0,他引:1  
The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17β-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression.  相似文献   

10.
We previously established that exposure of the estrogen receptor (ER) positive MCF-7 human breast cancer cell line to 17-β-estradiol (E2) results in the post-confluent development of multilayered cellular aggregates (foci) which is consistent with the in vivo cancer phenotype of uncontrolled cellular proliferation. In this investigation, the interaction between the insulin-like growth factor receptor (IGF-IR) and ER-signaling systems in regard to post-confluent focus development was studied. We demonstrated that focus development requires the presence of E2 and insulin-like growth factor I (IGF-I) or insulin-like growth factor II (IGF-II), as well as intact ER and IGF-IR.

Focus development in MCF-7 cultures, which occurs only after formation of a confluent monolayer, coincides with E2 regulation of key members of the IGF-signaling system such as IGF-IR, IGF-II, insulin receptor substrate 1 (IRS-1), and insulin-like growth factor binding protein 3 (IGFBP-3), as demonstrated by real-time polymerase chain reaction (PCR). To establish the relevancy of an intact IGF-signaling system for foci formation, we generated stable clones from MCF-7 with IGF-IR suppressed by siRNA. Results from these studies implicate signaling through the IGF-IR to be an integral requirement for E2-dependent post-confluent proliferation and focus formation. In summary, these studies establish the interactive roles of IGFs and E2 in the post-confluent development of foci, and will allow subsequent identification of targets for therapeutic intervention in the control and treatment of estrogen-dependent breast cancer.  相似文献   


11.
Huang  Hui  Cao  Shuyuan  Zhang  Zhan  Li  Lei  Chen  Feng  Wu  Qian 《Molecular biology reports》2020,47(5):3331-3346
Molecular Biology Reports - In recent years, sulforaphane (SFN) has been shown to have antitumor effects. To better understand the molecular basis of SFN intervention in estrogen-dependent breast...  相似文献   

12.
In order to investigate further the mechanisms associated with growth inhibition of human breast cancer cells by progestins and nonsteroidal antiestrogens, their effect on c-myc gene expression in T-47D-5 and T-47D cells has been investigated. The c-myc mRNA levels were differentially regulated by the synthetic progestin, medroxyprogesterone acetate and the nonsteroidal antiestrogen, monohydroxytamoxifen, in both cell lines. Antiestrogen treatment caused a persistent decrease in c-myc mRNA levels while the progestin caused a more complex response. Initially c-myc mRNA levels increased approx. 2-fold, this was followed by a decrease and then partial recovery. The end result, however, of each of these treatments is decreased cell number.  相似文献   

13.
Surfactin对人乳腺癌MCF-7细胞增殖、凋亡及细胞骨架的影响   总被引:1,自引:0,他引:1  
以体外培养的人乳腺癌细胞株MCF-7为研究对象,探讨surfactin对肿瘤细胞增殖、凋亡及细胞骨架的影响。MTT实验表明,surfactin能抑制MCF-7的增殖,并且呈现出浓度和时间的依赖关系,作用48h时的IC50是27.3μmol/L。AO/EB荧光染色法及流式细胞术检测发现,surfactin可诱导MCF-7发生典型的凋亡形态学改变和G2/M期阻滞。免疫荧光和免疫印迹结果表明,surfactin显著抑制了细胞内vimentin的表达,诱导了α-tubulin的解聚和重排,使细胞的骨架系统发生了剧烈的变化。可见,surfactin具有抑制MCF-7细胞增殖,诱导细胞凋亡的作用,其机制可能与细胞骨架蛋白的表达水平有关。  相似文献   

14.
Obesity, a condition characterized by increased fat content and altered secretion of adipokines, is a risk factor for postmenopausal breast cancer. Visfatin has recently been established as a novel adipokine that is highly enriched in visceral fat. Here we report that visfatin regulated proliferation of MCF-7 human breast cancer cells. Exogenous administration of recombinant visfatin increased cell proliferation and DNA synthesis rate in MCF-7 cells. Furthermore, visfatin activated G1-S phase cell cycle progression by upregulation of cyclin D1 and cdk2 expression. Visfatin also increased the expression of matrix metalloproteinases 2, matrix metalloproteinases 9, and vascular endothelial growth factor genes, suggesting that it may function in metastasis and angiogenesis of breast cancer. Taken together, these findings suggest that visfatin plays an important role in breast cancer progression.  相似文献   

15.
Glucocorticoids and progestins bind to receptors that share many structural and functional similarities, including virtually identical DNA recognition specificity. Nonetheless, the two hormones mediate very distinct biological functions. For example, progestins are associated with the incidence and progression of breast cancer, whereas glucocorticoids are growth suppressive in mammary cancer cells. To understand the mechanisms that engender biological specificity, it is necessary to identify genes that are differentially regulated by the two receptors. Here we employ Affymetrix oligonucleotide arrays to compare glucocorticoid- and progestin-regulated gene expression in a human breast cancer cell line. This global analysis reveals that the two hormones regulate overlapping but distinct sets of genes, including 31 genes that are differentially regulated. Surprisingly, the set of differentially regulated genes was almost as large as the set of genes regulated by both hormones. Examination of the set of differentially regulated genes suggests mechanisms behind the distinct growth effects of the two hormones in breast cancer. The differential regulation of four genes representing different regulatory patterns was confirmed by RT-PCR and Northern blot analyses. Treatment with cycloheximide or RU486 indicates that the regulation is a primary, receptor-mediated event. Detailed analyses of genes identified in these studies will furnish a mechanistic understanding of differential regulation by glucocorticoids and progestins.  相似文献   

16.
目的:研究Rab23分子对乳腺癌细胞生长增殖的作用,探讨这种作用是否与乳腺癌ER+/ER-依赖性相关。方法:选取ER+乳腺癌细胞系Bcap-37、MCF-7和ER-乳腺癌细胞系MDA-MB-231为研究对象,采用质粒转染提高细胞中Rab23基因的表达和RNA干涉技术减少其表达,运用克隆形成实验、BrdU掺入实验、MTT实验等技术检测Rab23分子对乳腺癌细胞生长、增殖的影响。结果:克隆形成实验提示,三种乳腺癌细胞系Rab23质粒转染组的集落形成数量明显少于对照组,而Gli1质粒转染组集落形成数量较对照组明显增加;BrdU掺入实验提示,Rab23转染组的三种乳腺癌细胞BrdU掺入率与对照组有明显减少(P&lt;0.05),而Rab23干涉组的BrdU掺入率较对照组升高(P&lt;0.05);MTT实验显示Rab23转染组A490值最低,其次为对照组,而Rab23干涉组A490值最高(P&lt;0.05)。结论:Rab23分子对乳腺癌细胞生长增殖有抑制作用,这种抑制作用可能与乳腺癌ER+/ER-依赖性无相关性。  相似文献   

17.
Evidence is accumulating that estradiol metabolites may be involved in carcinogenesis as some metabolites exert proliferative and others anti-proliferative properties on human cancer cells. The present study is the first to investigate the effect of 14 endogenous estradiol metabolites on the proliferation of the human breast cancer cell line, MCF-7, in comparison with the effect of the parent substance 17beta-estradiol with special concern on high pharmacological concentrations. The steroids were tested in the range from 10(-8) to 10(-5) M on MCF-7 cells which were incubated for nine days. Estradiol and almost all A-ring metabolites displayed biphasic reactions on cell proliferation, i.e. stimulatory at low concentrations and inhibitory at the highest concentration, 10(-5) M. The D-ring metabolites did not show such clear biphasic patterns, in most of them the stimulatory effect prevailed at the highest dosage used. The strongest inhibitory effect was seen for the A-ring metabolite 2-methoxyestradiol at the concentrations of 10(-6) and 10(-5) M and the strongest stimulatory effect was noted for the D-ring metabolite estriol at the same concentrations.The results indicate that some A-ring metabolites might be suitable for breast cancer treatment when used in high dosages. This is of special interest, since many of these metabolites have very weak estrogenic activity.  相似文献   

18.
Inhibitors of cyclin-dependent kinases (CDKs) are an emerging class of drugs for the treatment of cancers. CDK inhibitors are currently under evaluation in clinical trials as single agents and as sensitizers in combination with radiation therapy and chemotherapies. Drugs that target CDKs could have important inhibitory effects on cancer cell cycle progression, an extremely important mechanism in the control of cancer cell growth. Using rational drug design, we designed and synthesized fluorescent CDK inhibitors (VMY-1-101 and VMY-1-103) based on a purvalanol B scaffold. The new agents demonstrated more potent CDK inhibitory activity, enhanced induction of G2/M arrest and modest apoptosis as compared to purvalanol B. Intracellular imaging of the CDK inhibitor distribution was performed to reveal drug retention in the cytoplasm of treated breast cancer cells. In human breast cancer tissue, the compounds demonstrated increased binding as compared to the fluorophore. The new fluorescent CDK inhibitors showed undiminished activity in multidrug resistance (MDR) positive breast cancer cells, indicating that they are not a substrate for p-glycoprotein. Fluorescent CDK inhibitors offer potential as novel theranostic agents, combining therapeutic and diagnostic properties in the same molecule.  相似文献   

19.
20.
Human breast tumorigenesis is promoted by the estrogen receptor pathway, and nuclear receptor coactivators are thought to participate in this process. Here we studied whether one of these coactivators, AIB1 (amplified in breast cancer 1), was rate-limiting for hormone-dependent growth of human MCF-7 breast cancer cells. We developed MCF-7 breast cancer cell lines in which the expression of AIB1 can be modulated by regulatable ribozymes directed against AIB1 mRNA. We found that depletion of endogenous AIB1 levels reduced steroid hormone signaling via the estrogen receptor alpha or progesterone receptor beta on transiently transfected reporter templates. Down-regulation of AIB1 levels in MCF-7 cells did not affect estrogen-stimulated cell cycle progression but reduced estrogen-mediated inhibition of apoptosis and cell growth. Finally, upon reduction of endogenous AIB1 expression, estrogen-dependent colony formation in soft agar and tumor growth of MCF-7 cells in nude mice was decreased. From these findings we conclude that, despite the presence of different estrogen receptor coactivators in breast cancer cells, AIB1 exerts a rate-limiting role for hormone-dependent human breast tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号