首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research has shown that binding sites for hyaluronate are present on the surfaces of a number of different cell types. To further characterize these binding sites, membranes were prepared from SV-3T3 cells and dissolved in a solution of sodium deoxycholate. Hyaluronate binding activity was detected by mixing the sodium deoxycholate extract with [3H]hyaluronate and then adding an equal volume of saturated (NH4)2SO4, which precipitated the binding protein and any [3H]hyaluronate associated with it, but left free [3H]hyaluronate in solution. Following partial purification by hydroxylapatite chromatography, the binding site was examined by molecular sieve chromatography and by rate-zonal centrifugation, which revealed that it has a Stokes radius of 6.5 nm and a sedimentation coefficient of 4.8 S. From these values, it was possible to calculate that the sodium deoxycholate-solubilized binding site has a frictional coefficient of 1.87 and a molecular weight of 132,000. Since this latter value applies to the complex of both detergent and protein, the binding protein by itself must have a molecular weight lower than 132,000. To determine the molecular weight of the hyaluronate binding site itself, the protein was purified by the sequential application of hydroxylapatite chromatography, molecular sieve chromatography, rate-zonal centrifugation, and finally lectin-affinity chromatography on concanavalin A-agarose. Analysis of the purified material by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an 85,000 Mr protein which has been identified as the binding site. This protein was also detected on nitrocellulose blots which had been specifically stained for concanavalin A binding material, suggesting that the binding site is a glycoprotein.  相似文献   

2.
Purification of A1 adenosine receptor from rat brain membranes   总被引:1,自引:0,他引:1  
The A1 adenosine receptor from rat brain membranes has been purified about 50,000-fold to apparent homogeneity by sequential use of affinity chromatography on immobilized xanthine amine congener-agarose, hydroxylapatite chromatography, and reaffinity chromatography. The overall yield starting from the membranes was approximately 4%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified preparation gave a broad single band of an apparent molecular weight of 34,000 either by silver staining or autoradiogram after radioiodination. The purified receptor bound approximately 24 nmol of 8-cyclopentyl-1,3-[3H]dipropylxanthine/mg of protein with a dissociation constant of 1.4 nM. This maximum specific binding value is consistent with the expected theoretical specific activity (29.4 nmol/mg) for a protein with a molecular mass of 34,000 daltons if it is assumed that there is one ligand-binding site/receptor molecule. Affinity-labeling experiments using [3H]p-phenylenediisothiocyanate-xanthine amine congener showed that the Mr = 34,000 protein band contained the ligand-binding sites. The purified receptor gave a typical A1 adenosine receptor pharmacological specificity similar to that of unpurified receptor preparations.  相似文献   

3.
An endogenous inhibitor(s) of [3H] diazepam binding to synaptosomes has been demonstrated in bovine brain. The inhibitory activity of crude extracts is heat stable, dialyzable, and not affected by ether extraction. Three distinct peaks of inhibitory activity were resolved using Sephadex G-25 chromatography. The lowest molecular weight peak (<700 daltons) had the highest specific inhibitory activity and its inhibition of [3H] diazepam binding was competitive. A similar low molecular weight fraction was not observed in either muscle or liver suggesting that it may be unique to brain. Thin layer chromatography of the Sephadex G-25 fractions revealed a discrete band of inhibitory activity in the two low molecular weight peaks.  相似文献   

4.
S Collins  M A Marletta 《Biochemistry》1986,25(15):4322-4329
Binding proteins for the polycyclic aromatic hydrocarbon carcinogen benzo[a]pyrene (B[a]P) have been purified from C57B1/6J mouse liver. Following affinity chromatography on aminopyrene-Sepharose, a single polypeptide of 29,000 daltons was isolated. The photolabile compound 1-azidopyrene was developed as a photoaffinity labeling agent to identify the protein during its purification. 1-Azidopyrene was found to be a competitive inhibitor of [3H]B[a]P binding. Affinity labeling studies with [3H]-1-azidopyrene in unfractionated cytosol, and in purified preparations, yielded a single covalently labeled protein of 29,000 daltons. The formation of this labeled species was blocked by preincubation with excess unlabeled B[a]P. A native molecular weight of 30,000 was estimated by gel filtration chromatography of [3H]B[a]P- and [3H]-1-azidopyrene-labeled cytosol proteins. An equilibrium dissociation constant of 2.69 +/- 0.66 nM and a maximum number of binding sites of 2.07 +/- 0.10 nmol of [3H]B[a]P bound/mg of protein were estimated for the pure protein. Two-dimensional gel electrophoresis further resolved the purified 29,000-dalton protein into three major isoelectric variants, each of which was specifically labeled by [3H]-1-azidopyrene.  相似文献   

5.
[3H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [3H]-cocaine with a high affinity site of 170 fmole/mg protein (Kd 16.7 nM). The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [3H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear.  相似文献   

6.
7.
We have purified and characterized the adenosine A2-like binding site from human placental membranes. 5'-N-Ethylcarboxamido[2,8-3H]adenosine ([3H]NECA) binds to this site, with a Kd of 240 nM and a Bmax of 13.0 pmol/mg in human placental membranes. The adenosine A2-like binding site was purified after extraction from placental membranes with 0.1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The purification included ammonium sulfate precipitation and concanavalin A, DEAE-Sephadex, and Sepharose 6B gel filtration chromatographies. The protein was purified 127-fold to homogeneity, with a final specific activity of 1.5-1.9 nmol/mg of protein and a 5.5-8.1% yield of binding activity from the membranes. The purified protein had similar binding properties and an identical potency order for displacement of [3H] NECA by adenosine analogs as the initial membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified protein revealed a single band at 98 kDa which coeluted with [3H]NECA binding activity during Sepharose 6B gel filtration chromatography. In 0.1% Triton X-100, the binding complex has a Stokes radius of 70 A, a sedimentation coefficient of 6.9 S, and a partial specific volume of 0.698 ml/g. The detergent-protein complex has a calculated molecular mass of 230 kDa. The estimated frictional ratio is 1.5. The native binding complex appears to consist of a dimer of identical subunits. The function of this ubiquitous protein remains unclear.  相似文献   

8.
Muscimol is one of the most potent agonist ligands at the gamma-aminobutyric acidA (GABAA) receptor. Analysis of its chemical structure showed it to be a candidate for photoaffinity labeling. In practice, UV irradiation at 254 nm both changed the UV spectrum of muscimol and induced an irreversible binding of [3H]-muscimol to rat cerebellar synaptosomal membrane. After 10 min of irradiation, using 10 nM [3H]muscimol, the specific portion of this binding was 270 fmol/mg protein. (Nonspecific binding was defined as that arising in the presence of 1 mM GABA.) Specific binding increased asymptotically up to 100 nM [3H]muscimol. Irradiation of the membranes themselves did not significantly alter the KD or Bmax of reversible [3H]muscimol binding. However, irradiation of [3H]muscimol reduced its capacity subsequently to photolabel the membranes by 86 +/- 3%. Dose-dependent inhibition of binding was observed with muscimol, GABA, and bicuculline methiodide; with 10 nM [3H]muscimol maximum inhibition was 70% of total labeling and the order of potencies of these three compounds was characteristic of labeling to the GABAA receptor. Baclofen, l-glutamate, and diazepam exerted no effect at high concentrations. SDS-PAGE of the photolabeled membranes indicated specific incorporation of radioactivity into two molecular-weight species. One failed to enter the separating gel, implying a molecular weight greater than 250,000 daltons (250 kD). The molecular weight of the other was identified by fluorography to be about 52,000 daltons (52 kD).  相似文献   

9.
The gamma-aminobutyric acidA (GABAA) receptor of codfish brain has been purified to homogeneity and contains a single polypeptide band of 56 kDa molecular mass. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) of codfish GABA receptor photoaffinity-labeled by both [3H]flunitrazepam ([3H]Flu) and [3H]muscimol showed a single radioactive peak with molecular mass of 56 kDa, in contrast to the multiple subunits found in other vertebrate species. The codfish receptor, purified using benzodiazepine (BZ, Ro 7-1986/1) affinity chromatography, contains an apparent single band both by isoelectric focussing and on a silver-stained SDS gel. The receptor density and affinity constants for [3H]muscimol and [3H]Flu binding are comparable to those in mammalian brain, and the specific activity (greater than 1,000 pmol/mg of protein) is comparable to that of preparations purified from those sources. The pharmacological specificity of the codfish GABA-BZ receptor is generally similar to that of mammalian brain, including GABA-BZ coupling. The BZ binding exhibits homogeneous kinetic properties resembling those of the mammalian BZ2 receptor type, and shows strong GABA enhancement of [3H]Flu binding and weaker pentobarbital potentiation. This is consistent with other observations of an earlier phylogenetic, as well as ontogenetic, emergence in mammals of the BZ2 receptor subtype than the BZ1. Codfish GABA receptor is postulated to be a homo-oligomer in which the conformation of GABA and BZ recognition sites is very similar to that in the mammalian hetero-oligomeric GABAA receptor. The codfish receptor appears to be encoded by an ancestral gene and indicates an early development of BZ-GABA coupling.  相似文献   

10.
A glycolipid-specific lipid transfer protein has been purified to apparent homogeneity from pig brain post-mitochondrial supernatant. The purified protein was obtained after about 6,000-fold purification at a yield of 19%. Evidence for the homogeneity of the purified protein includes the following: (i) a single band in acidic gel electrophoresis, in sodium dodecyl sulfate-gel electrophoresis, (ii) a single band in analytical gel isoelectric focusing, (iii) exact correspondence between the glycolipid transfer activity and stained protein absorbance in the acidic gel electrophoresis, and (iv) coincidence between the transfer activity and protein absorption at 280 nm in gel filtration through Ultrogel AcA 54. The protein has an isoelectric point of about 8.3 and a molecular weight of 22,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecular weight of 15,000 was calculated from AcA 54 gel filtration. The amino acid composition has been determined. The protein binds [3H]galactosylceramide but not [3H]phosphatidylcholine. Under the conditions used, 1 mol of the transfer protein bound about 0.13 mol of [3H]galactosylceramide. The glycolipid transfer protein-[3H]galactosylceramide complex was isolated by a Sephadex G-75 chromatography. An incubation of the complex with liposomes resulted in the transfer of [3H]galactosylceramide from the complex to the acceptor liposomes. The result indicates that the complex functions as an intermediate in the glycolipid transfer reaction. The protein facilitates the transfer of [3H]galactosylceramide from donor liposomes to acceptor liposomes lacking in glycolipid as well as to acceptor liposomes containing galactosylceramide.  相似文献   

11.
The presence of a [3H]muscimol binding site on the purified benzodiazepine receptor was demonstrated. The purified protein was apparently homogeneous as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (stained with silver), with a molecular weight of 60,000 +/- 3000. The benzodiazepine binding sites were characterized as being of the central type and the [3H]flunitrazepam binding was enhanced by GABA. This activation was antagonized by bicuculline. [3H]Muscimol specifically binds to the benzodiazepine receptor. The Scatchard plot indicates a Kd of 23 nM and the ratio [3H]flunitrazepam/[3H]muscimol is approximately unity.  相似文献   

12.
The alpha 1-adrenergic receptor has been solubilized in active form from rat hepatic membranes with the nonionic detergent, digitonin, and purified by affinity and gel filtration chromatography to homogeneity with a specific activity of 14,400 pmol/mg of protein. The affinity chromatographic steps of the purification procedure were achieved by the use of a newly synthesized analog (2-[4(2-succinoyl)piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline, CP-57,609) of the highly selective alpha 1-adrenergic antagonist, prazosin, immobilized via an amide linkage to agarose. The resulting purified receptor bound [3H]prazosin and a variety of adrenergic agents with the specificity, stereoselectivity, and affinities equivalent to those observed with membrane-bound and solubilized receptor preparations. The purified receptor.digitonin complex had a Stokes radius of 49 A and a sedimentation coefficient (s20w) of 7.1, as determined by AcA-34 gel filtration chromatography and sucrose gradient density centrifugation, respectively. Based on these hydrodynamic parameters, the calculated molecular weight of the receptor.digitonin complex was estimated at 147,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis following the final purification step revealed a single band of protein at 59,000 daltons from which [3H]prazosin binding activity could be recovered after renaturation of the receptor protein. These findings indicate that the protein purified from rat hepatic membranes is the hormone binding component of the alpha 1-adrenergic receptor and that the receptor molecule most likely contains more than one Mr = 59,000 subunit.  相似文献   

13.
By using a 3-carboxymethyloxime dexamethasone derivative coupled to bovine serum albumin we have prepared specific anti-dexamethasone antibodies in rabbits. These antibodies were then purified by affinity chromatography and administered to a second set of rabbits. One of them produced anti-idiotypic antibodies able to impede the [3H] dexamethasone binding of the initial anti-dexamethasone antibodies and to displace the [3H] dexamethasone-antibodies complexes towards high molecular weight species in gel filtration experiments. Moreover these antibodies we were also able to impede the binding of [3H] dexamethasone to the rat liver glucocorticoid receptor and to recognize the highly purified receptor using Western blot analysis.  相似文献   

14.
A 5'-N-ethylcarboxamido[3H]adenosine ([3H]NECA) binding site of mouse mastocytoma P815 cell membranes has been purified approximately 100-fold by affinity chromatography. This adenosine binding site, which has a similar specificity to that of the A2 adenosine receptor, was absorbed on NECA-linked Sepharose 6B and eluted with NECA. The adsorption of the [3H]NECA binding site to the affinity matrix was specifically blocked by NECA. The [3H]NECA binding site bound on the affinity matrix was also specifically eluted by NECA. This affinity matrix adsorbed approximately 90% of the digitonin-solubilized [3H]NECA binding activity applied, and after the gel was washed, 30-50% of the adsorbed binding activity could be eluted with 500 microM NECA with specific binding activity of 50-70 pmol/mg of protein. The affinity-purified [3H]NECA binding site retained the same ligand binding specificities as the original membrane preparation. The results indicate that the NECA-Sepharose Sepharose 6B should provide a powerful tool for the eventual purification of [3H]NECA binding sites of P815 cell membranes.  相似文献   

15.
Acetylcholinesterase was purified from the soluble supernatant of monkey (Macaca radiata) brain basal ganglia by a three-step affinity purification procedure. The purified enzyme showed two major protein bands corresponding to molecular weights of approximately 65 kDa and approximately 58 kDa which could be labelled by [3H]diisopropylfluorophosphate. When the purified enzyme was subjected to limited trypsin digestion followed by gel filtration on Sephadex G-75 or Sephadex G-25 column, a peptide fragment of molecular weight approximately 300 Da having a weak acetylthiocholine hydrolysing activity was isolated. The amino acid sequence analysis of this peptide showed a sequence of Gly-Pro-Ser. When the [3H]DFP labelled enzyme was subjected to limited trypsin digestion and Sephadex G-75 column chromatography, a labelled peptide corresponding to approximately 430 Da was isolated. The kinetics, inhibition characteristics and binding characteristics to lectins of this peptide were compared with the parent enzyme. A synthetic peptide of sequence Gly-Pro-Ser was also found to exhibit acetylthiocholine hydrolysing activity. The kinetics and inhibition characteristics of the synthetic peptide were similar to those of the peptide derived from the purified acetylcholinesterase, except that the synthetic peptide was more specific towards acetylthiocholine than butyrylthiocholine. The specific activity (units/mg) of the synthetic peptide was about 123700 times less than that of the purified AChE.  相似文献   

16.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding sites were solubilized from rat brain membranes using 1% Triton X-100 in 0.5 M potassium phosphate buffer containing 20% glycerol. The solubilized binding sites were stable, permitting biochemical and pharmacological characterization as well as partial purification. Pharmacological and binding analyses indicated that the solubilized binding sites were similar to the membrane-bound sites. Both the solubilized and the membrane-bound preparations contained high- and low-affinity AMPA binding sites in the presence of potassium thiocyanate. A similar rank order for inhibition of [3H]AMPA binding by several excitatory amino acid analogs was obtained for the soluble and membrane-bound preparations. [3H]AMPA binding to both soluble and membrane-bound preparations was increased in the presence of potassium thiocyanate. The solubilized AMPA binding sites migrated as a single peak with gel filtration chromatography, with an Mr of 425,000. Beginning with the solubilized preparation, AMPA binding sites were purified 54-fold with ion-exchange chromatography and gel filtration. The characterization and purification of these soluble binding sites is potentially useful for the molecular characterization of this putative excitatory amino acid receptor subtype.  相似文献   

17.
The gamma-aminobutyric acid/benzodiazepine receptor from bovine cerebral cortex was solubilized with sodium deoxycholate and purified by affinity chromatography on benzodiazepine-agarose and ion exchange chromatography. The benzodiazepine binding protein was enriched 1800-fold. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol showed the presence of two major bands of Mr = 57,000 and 53,000. [3H]Flunitrazepam, after UV irradiation, was incorporated irreversibly into both bands of the isolated protein. A high affinity binding site for gamma-aminobutyric acid was co-purified with the benzodiazepine binding site and the two sites were shown to reside on the same physical structure. The dissociation constants were 10 +/- 4 nM for [3H] flunitrazepam and 12 +/- 3 nM for the gamma-aminobutyric acid agonist [3H]muscimol. The maximum specific activity for [3H] muscimol binding was 4.3 nmol/mg of protein. The ratio of [3H]muscimol to [3H]flunitrazepam binding sites was between 3 and 4. Gel filtration and sucrose density gradient sedimentation studies gave a Stokes radius of 7.3 +/- 0.5 nm and a sedimentation coefficient of 11.1 +/- 0.3 S, respectively. The purified complex had a pharmacological profile that corresponds to the receptor specificity found in membranes and crude soluble extracts.  相似文献   

18.
When the 100,000 X g supernatant fractions of several rat organs are incubated with all-trans-[3H]retinoic acid, a binding component for retinoic acid with a sedimentation coefficient of 2 S can be detected by sucrose gradient centrifugation. This tissue binding protein for retinoic acid is distinct from the tissue binding protein for retinol which has been previously described. The tissue retinoic acid-binding protein has been partially purified from rat testis and this partially purified protein would appear to have a molecular weight of 14,500 as determined by gel filtration and high binding specificity for all-trans-retinoic acid. Binding of [3H]retinoic acid is not diminished by a 200-fold molar excess of retinal, retinol, or oleic acid but is reduced by a 200-fold excess of unlabeled retinoic acid. Tissue retinoic acid-binding protein can be detected in extracts of brain, eye, ovary, testis, and uterus but is apparently absent in heart muscle, small intestine, kidney, liver, lung, gastrocnemious muscle, serum, and spleen. This distribution is different than that observed for the tissue retinol-binding protein. Tissue retinol-binding protein was also purified extensively from rat testis. The partially purified protein has an apparent molecular weight of 14,000 and high binding specificity for all-trans-[3H]retinol as only unlabeled all-trans-retinol but not retinal, retinoic acid, retinyl acetate, retinyl palmitate, or oleic acid could diminish binding of the 3H ligand under the conditions employed. The partially purified protein has a fluorescence excitation spectrum with lambda max at 350 nm. In contrast, the retinol-binding protein isolated from rat serum and described by others has a fluorescence excitation spectrum with lambda max at 334 nm and an apparent molecular weight of 19,000. When partially purified tissue retinol-binding protein is extracted with heptane, the heptane extract has a fluorescence excitation spectrum similar to that of all-trans-retinol.  相似文献   

19.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

20.
Radioligand binding studies with the water-soluble cannabinoid [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) have revealed a saturable high-affinity site in brain that is specific for cannabinoids. To determine whether endogenous compounds of brain might act upon the site physiologically, we sought inhibitors in extracts of brain. An endogenous inhibitor has been purified to homogeneity by acid extraction of rat brain followed by adsorption to a reverse-phase matrix and gel filtration chromatography. The purified inhibitor has a subunit molecular mass of 14,500 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Inhibition of [3H]TMA binding by the purified inhibitor occurs with a Ki of about 4 nM in a noncompetitive manner. The molecular weight, abundance, and extraction properties are the same as a species of myelin basic protein (MBP). The MBPs of rat, rabbit, pig, and cow also inhibit [3H]TMA binding noncompetitively with similar potencies. The purified inhibitor comigrates with rat MBP-small form on SDS-PAGE, has a similar amino acid composition, and is recognized by antibody directed against MBP. Studies of fragments of rabbit MBP suggest that the determinants of affinity for the [3H]TMA site are contained primarily within the C-terminal half of the rabbit MBP. Synthetic polycationic peptides such as polylysine and polyarginine mimic the effects of MBP, suggesting that the high-affinity cannabinoid binding site recognizes large polycations. The identification of the endogenous inhibitor of [3H]TMA binding as MBP suggests that MBP interacts physiologically with the high-affinity cannabinoid site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号