首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Toxic and pharmacokinetic profiles of drug candidates are evaluated in vivo often using monkeys as experimental animals, and the data obtained are extrapolated to humans. Well understanding physiological properties, including drug-metabolizing enzymes, of monkeys should increase the accuracy of the extrapolation. The present study was performed to compare regio- and stereoselectivity in the oxidation of propranolol (PL), a chiral substrate, by cytochrome P450 2D (CYP2D) enzymes among humans, cynomolgus monkeys and marmosets. Complimentary DNAs encoding human CYP2D6, cynomolgus monkey CYP2D17 and marmoset CYP2D19 were cloned, and their proteins expressed in a yeast cell expression system. The regio- and stereoselective oxidation of PL enantiomers by yeast cell microsomal fractions were compared. In terms of efficiency of expression in the system, the holo-proteins ranked CYP2D6 ≒ CYP2D17 ? CYP2D19. This may be caused by the bulky side chain of the amino acid residue at position 119 (leucine for CYP2D19 vs. valine for CYP2D6 and CYP2D17), which can disturb the incorporation of the heme moiety into the active-site cavity. PL enantiomers were oxidized by all of the enzymes mainly into 4-hydroxyproranolol (4-OH-PL), followed by 5-OH-PL and N-desisopropylpropranolol (NDP). In the kinetic analysis, apparent Km values were commonly in the μM range and substrate enantioselectivity of R-PL < S-PL was observed in both Km and Vmax values for the formation of the three metabolites from PL enantiomers. The activity to produce NDP tended to be higher for the monkey enzymes, particularly CYP2D17, than for the human enzyme. These results indicate that in the oxidation of PL enantiomers by CYP2D enzymes, stereoselectivity is similar but regioselectivity is different between humans and monkeys.  相似文献   

2.
P450 enzymes are of great interest for drug metabolism and as potential biocatalysts. Like most P450s, purified CYP3A4 is normally handled and stored in solution because lyophilization greatly reduces its activity. We show here that colyophilization of this enzyme with sucrose or trehalose, but not mannitol, crown ethers or cyclodextrins, allow recovery of full enzymatic activity after rehydration. Sorbitol was almost as efficient, with 85% retention of the original activity. We also show that similar protection is observed through colyophilization of CYP2D6 with trehalose. This procedure should greatly facilitate handling, storage, or use of these enzymes in anhydrous media.  相似文献   

3.
4.
CYP2D6 exhibits genetic polymorphism with interindividual differences in metabolic activity. We have found a significant influence on the pharmacokinetics of venlafaxine by the CYP2D6*10 allele in a Japanese population. CYP2D6.10, which is translated from CYP2D6*10, has two amino acid substitutions: Pro34 --> Ser and Ser486 --> Thr. In this study, CYP2D6.10 was expressed in Saccharomyces cerevisiae and its catalytic activity for CYP2D6 substrates was investigated. The CYP2D6*10B- and *10C-associated cDNA were isolated from human lymphocyte genotyped as CYP2D6*10. In addition, three forms of CYP2D6, Pro34/Thr486 (PT), Ser34/Ser486 (SS), and Pro34/Ser486 (wild type, CYP2D6.1), were constructed by PCR-site mutagenesis to clarify the effects of the two amino-acid substitutions. The expression of CYP2D6 protein was confirmed by immunoblotting using CYP2D antibody. The absorbance at 450 nm was measured by CO-reduced difference spectra from five all microsome preparations. The CYP2D6 forms with Pro34 --> Ser amino acid substitution were at a lower expression than CYP2D6.1 from the findings of immunoblotting and spectral analysis. The apparent K(m) values of CYP2D6.1, CYP2D6.10A, and CYP2D6.10C were 1.7, 8.5, and 49.7 microM, respectively, for bufuralol 1'-hydroxylation, and 9.0, 51.9, and 117.4 microM, respectively, for venlafaxine O-demethylation, respectively. The V(max) values were not significantly different among the three variants. These findings suggest that the decreased in vivo clearance by CYP2D6*10 was caused not only by low expression of but also the increased K(m) value of CYP2D6.  相似文献   

5.
Grobe N  Kutchan TM  Zenk MH 《FEBS letters》2012,586(13):1749-1753
The assumption that CYP2D1 is the corresponding rat cytochrome to human CYP2D6 has been revisited using recombinant proteins in direct enzyme assays. CYP2D1 and 2D2 were incubated with known CYP2D6 substrates, the three morphine precursors thebaine, codeine and (R)-reticuline. Mass spectrometric analysis showed that rat CYP2D2, not 2D1, catalyzed the 3-O-demethylation reaction of thebaine and codeine. In addition, CYP2D2 incubated with (R)-reticuline generated four products corytuberine, pallidine, salutaridine and isoboldine while rat CYP2D1 was completely inactive. This intramolecular phenol-coupling reaction follows the same mechanism as observed for CYP2D6. Michaelis-Menten kinetic parameters revealed high catalytic efficiencies for rat CYP2D2. These findings suggest a critical evaluation of other commonly accepted, however untested, CYP2D1 substrates.  相似文献   

6.
P450 enzymes are of high interest for synthetic applications due to their ability to catalyze hydroxylation reactions at inactivated C-H bonds. The low solubility of many substrates in buffer, however, is limiting the applications of P450s. Our recent demonstration that the P450 enzymes CYP2D6 and CYP3A4 can function very well in biphasic solvent systems is one step towards overcoming this drawback, but is not practical when substrates or products are unstable in water, or with water-soluble products. An alternative strategy, which also facilitates enzyme recycling, is to directly resuspend lyophilized enzyme into nearly anhydrous organic solvents. Interestingly, we report here that CYP2D6 colyophilized with trehalose and suspended in n-decane shows higher activity than in aqueous buffer. This study demonstrates the unexpected high tolerance of CYP2D6 to some low water organic solvents and provides an alternative strategy to facilitate the use of this enzyme in synthesis.  相似文献   

7.
细胞色素P450 2D6酶缺陷等位基因的分析   总被引:2,自引:0,他引:2  
细胞色素P450 2D6(CYP2D6)第1 795位胸腺嘧啶核苷缺失造成CYP2D6酶活性缺陷,该等位基因被称为CYP2D6T.对该等位基因的测定有助于准确预测CYP2D6表现型.利用等位基因特异扩增法的基本原理,建立了测定CYP2D6T的方法.经396例测定,证明比利用PCR扩增后再酶切的方法更为快捷、更少污染,为该项测定应用于临床奠定基础.  相似文献   

8.
The activation of vitamin D requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. However, it remains unclear which enzyme is relevant to vitamin D 25-hydroxylation. Recently, human CYP2R1 has been reported to be a potential candidate for a hepatic vitamin D 25-hydroxylase. Thus, vitamin D metabolism by CYP2R1 was compared with human mitochondrial CYP27A1, which used to be considered a physiologically important vitamin D(3) 25-hydroxylase. A clear difference was observed between CYP2R1 and CYP27A1 in the metabolism of vitamin D(2). CYP2R1 hydroxylated vitamin D(2) at the C-25 position while CYP27A1 hydroxylated it at positions C-24 and C-27. The K(m) and k(cat) values for the CYP2R1-dependent 25-hydroxylation activity toward vitamin D(3) were 0.45microM and 0.97min(-1), respectively. The k(cat)/K(m) value of CYP2R1 was 26-fold higher than that of CYP27A1. These results strongly suggest that CYP2R1 plays a physiologically important role in the vitamin D 25-hydroxylation in humans.  相似文献   

9.
The identification of a novel CYP2D6 allele from a healthy Caucasian poor metabolizer was achieved by using a previously described polymerase chain reaction/single-strand conformation polymorphism strategy. Among the four point mutations that this allele carries, a missense mutation in exon 1 (212 G → A or D6–H) seems to be responsible for the loss of CYP2D6 function. Although the mutation D6-H has a low prevalence in a randomly selected population of healthy Caucasians, its identification should further increase the phenotype prediction rate by genotyping. Received: 14 September 1995 / Revised: 22 November 1995  相似文献   

10.
Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to its active metabolite O-demethyltramadol (M1). Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify poor metabolizers (PM) with >99% confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. Homozygous extensive metabolizers (EM) differed from PM subjects by an almost threefold greater (P=0.0014) maximal pupillary constriction (Emax). Significant correlations between the AUC and Cmax values of M1 versus pupillary constriction were found. The corresponding correlations of pharmacokinetic parameters for tramadol itself were weaker and negative. The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p<0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population.  相似文献   

11.
12.
PNU-106893, N-{3-[1-(4-hydroxy-2-oxo-6-phenyl-6-propyl-5, 6-dihydro-2H-pyran-3-yl)-2, 2-dimethylpropyl]phenyl}-1-methyl-1H-imidazole-4-sulfonamide, is a selective HIV aspartyl protease inhibitor under evaluation as a potential oral treatment of acquired immunodeficiency disease. PNU-106893 is a mixture of four stereoisomers, designated PNU-109165 (3alphaR, 6S), PNU-109166 (3alphaR, 6R), PNU-109167 (3alphaS, 6S), and PNU-109168 (3alphaS, 6R). The major P450 isoforms involved in the metabolism of PNU-106893 and its pure stereoisomers are identified as CYP2D6 and CYP3A4. The major oxidative biotransformation pathway of PNU-106893 which occurs in microsomal incubations appears to be hydroxylation of the phenylethyl side chain attached to the C-6 carbon of the dihydropyrone ring. This hydroxylation is mediated by CYP2D6 only and the process is stereoselective for the 6R absolute stereochemistry. The configuration at position 3 appears to play a minor role in the CYP2D6 mediated hydroxylation. These insights have impacted drug candidate selection for this class of compounds.  相似文献   

13.
14.
The cytochrome P-450 (CYP) isoenzymes, a superfamily of heme proteins which are the terminal oxidases of the mixed function oxidases system, metabolize more than 70% of all clinically approved drugs. The highly polymorphic CYP2D6 isoform metabolizes more than 25% of most common drugs, and the phenotypes of the 70-plus allelic variants range from compromised to excessive enzymatic activity. Porphyrias are a group of inherited or acquired metabolic disorders of heme biosynthesis, due to a specific decrease in the activity of one of the enzymes of the heme pathway. Clinical signs and symptoms of porphyrias are frequently associated with exposure to precipitating agents, including clinically approved drugs. CYP enzymes, including CYP2D6, participate in the metabolism of some porphyrinogenic drugs, leading to the deregulation of heme biosynthesis. Considering that some of the drugs not recommended for use in porphyric patients are metabolized by CYP2D6, the presence of CYP2D6 polymorphisms in porphyric patients would influence the triggering of the disease when these individuals receive a precipitating agent that is metabolized by CYP2D6. To investigate CYP2D6 polymorphisms in porphyric patients, healthy Argentinean volunteers, porphyric patients, and a group of individuals with high levels of iron were studied. Results indicated that the CYP2D6*3 and CYP2D6*4 alleles, in particular, would be linked to the onset of disease. Predictive genotyping for CYP2D6 in porphyric patients holds promise as a method to improve the clinical efficacy of drug therapy and to personalize drug administration for these patients.  相似文献   

15.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

16.
We describe a high-throughput protocol for detecting key polymorphisms in the drug-metabolizing enzyme gene CYP2D6 and a number of linked microsatellites that is both fast and relatively inexpensive to perform. This approach employs GeneScan technology to enable a researcher to determine rapidly the status of seven simple nucleotide polymorphisms in CYP2D6 and also to assay repeat number variation at five closely linked dinucleotide microsatellite loci. The method requires only three PCRs and two GeneScan runs per sample. We anticipate that this will be of value to researchers in three different ways: (1) rapid discrimination of common CYP2D6 alleles, (2) high-resolution haplotyping for association studies involving chromosome 22q13.1 using microsatellite variation, and (3) generation of compound haplotypes for investigating the evolution of CYP2D6 variation. We also report compound haplotype frequencies for an Ashkenazi Jewish and a British sample.  相似文献   

17.
18.
细胞色素P450 2D6缺陷型等位基因的家系分析   总被引:1,自引:1,他引:1  
利用等位基因特民扩增法(ASA)为基础的基因分型法,对细胞色素P4502D6 (CYP2D6)缺陷型等位基因携带者的9个家庭共38个进行了基因分型,并与用右旋美沙芬为 探针的表型分型法进行对比,发现两种方法的结果是一致的,CYP2D6酶缺陷型等位基因呈常染色体隐性遗传。 Abstract:A genotyping method based on the principle of allele-specific amplification and a phenotyping procedure with dextromethorphan as a probe were employed in familial study of nine families with 38 members for the cytochrome P450 2D6(CYP2D6)deficient alleles——CYP2D6A,CYP2D6B,CYP2D6D and CYP2D6T.The results showed that the CYP2D6 deficient alleles were inherited as an autosomal recessive trait.  相似文献   

19.
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号