首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Epithelial cell rests of Malassez (ERM) are quiescent epithelial remnants of Hertwig's epithelial root sheath (HERS) that are involved in the formation of tooth roots. After completion of crown formation, HERS are converted from cervical loop cells, which have the potential to generate enamel for tooth crown formation. Cervical loop cells have the potential to differentiate into ameloblasts. Generally, no new ameloblasts can be generated from HERS, however this study demonstrated that subcultured ERM can differentiate into ameloblast-like cells and generate enamel-like tissues in combination with dental pulp cells at the crown formation stage. Porcine ERM were obtained from periodontal ligament tissue by explant culture and were subcultured with non-serum medium. Thereafter, subcultured ERM were expanded on 3T3-J2 feeder cell layers until the tenth passage. The in vitro mRNA expression pattern of the subcultured ERM after four passages was found to be different from that of enamel organ epithelial cells and oral gingival epithelial cells after the fourth passage using the same expansion technique. When subcultured ERM were combined with subcultured dental pulp cells, ERM expressed cytokeratin14 and amelogenin proteins in vitro. In addition, subcultured ERM combined with primary dental pulp cells seeded onto scaffolds showed enamel-like tissues at 8 weeks post-transplantation. Moreover, positive staining for amelogenin was observed in the enamel-like tissues, indicating the presence of well-developed ameloblasts in the implants. These results suggest that ERM can differentiate into ameloblast-like cells.  相似文献   

2.
Nam H  Kim J  Park J  Park JC  Kim JW  Seo BM  Lee JC  Lee G 《Molecules and cells》2011,31(4):355-360
Hertwig’s epithelial root sheath/Epithelial rests of Malassez (HERS/ERM) cells are unique epithelial cells in the periodontal ligament. They remain in periodontal tissues through-out the adult life, and it is expected that their functional role is to maintain the homeostasis of the periodontium through reciprocal interactions with other periodontal cells. In this study, we investigated whether HERS/ERM cells have primitive stem cell characteristics: those of embryonic stem cells as well as of epithelial stem cells. Primary HERS/ERM cells had typical epithelial cell morphology and characteristics and they maintained for more than five passages. They expressed epithelial stem cell-related genes: ABCG2, ANp63, p75, EpCAM, and Bmi-1. Moreover, the expression of embryonic stem cell markers such as Oct-4, Nanog, and SSEA-4 were detected. Next, we investigated whether the expression of these stem cell markers was maintained during the sub-culture process. HERS/ERM cells showed different expression levels of these stemness genes at each passage, but their expression was maintained throughout the passages. Taken together, our data suggest that a primary culture of HERS/ERM cells contains a population of primitive stem cells that express epithelial stem cell markers and embryonic stem cell markers. Furthermore, these cell populations were maintained during the sub-culturing process in our culture conditions. Therefore, our findings suggest that there is a strong possibility of accomplishing cementum tissue engineering with HERS/ERM cells.  相似文献   

3.
Cell proliferation and death of Hertwig's epithelial root sheath in the rat   总被引:5,自引:0,他引:5  
Hertwig's epithelial root sheath (HERS) degenerates immediately after root dentin is formed. However, odontogenic tumors or cysts may originate from residual cells, although little is known about how HERS proliferates and disappears. This study investigated whether cell death is provoked in the tissues surrounding the root during eruption of the rat upper molar. We employed the TdT-mediated-dUTP nick end labeling (TUNEL) method and transmission electron microscopy (TEM) to observe the morphological features of cell death. We examined the activity of cell proliferation immunohistochemically using proliferative cell nuclear antigen (PCNA) and the continuity of HERS using polyclonal keratin antibody (PK). Cell death resembling apoptosis and apoptotic bodies phagocytosed by neighboring mesenchymal cells were detected in only a few cells by both TUNEL and TEM. We also found cells with electron-lucent cytoplasm which contained dilated or ruptured mitochondria and remarkably dilated rough endoplasmic reticulum (rER) which lay sparsely along the root. These cells seemed to be dead HERS cells based on their ultrastructural features, location, and stage. PCNA-positive cells were found in the apical end of the HERS cells, fibroblasts of the periodontal ligament, and odontoblasts. PK reacted with HERS; however, PK-positive cells partially disappeared after the 15th postnatal day when the root dentin had formed slightly. These results may indicate that HERS cells migrate into the periodontal ligament or die immediately after root dentin is formed and that various types of cell death such as apoptosis and cytoplasmic type occur in the tissues surrounding the root during tooth development.  相似文献   

4.
SUMMARY Root development is traditionally associated with the formation of Hertwig's epithelial root sheath (HERS), whose fragments give rise to the epithelial cell rests of Malassez (ERM). The HERS is formed by depletion of the core of stellate reticulum cells, the putative stem cells, in the cervical loop, leaving only a double layer of the basal epithelium with limited growth capacity. The continuously growing incisor of the rodent is subdivided into a crown analog half on the labial side, with a cervical loop containing a large core of stellate reticulum, and its progeny gives rise to enamel producing. The lingual side is known as the root analog and gives rise to ERM. We show that the lingual cervical loop contains a small core of stellate reticulum cells and suggest that it acts as a functional stem cell niche. Similarly we show that continuously growing roots represented by the sloth molar and K14-Eda transgenic incisor maintain a cervical loop with a small core of stellate reticulum cells around the entire circumference of the tooth and do not form a HERS, and still give rise to ERM. We propose that HERS is not a necessary structure to initiate root formation. Moreover, we conclude that crown vs. root formation, i.e. the production of enamel vs. cementum, and the differentiation of the epithelial cells into ameloblasts vs. ERM, can be regulated independently from the regulation of stem cell maintenance. This developmental flexibility may underlie the developmental and evolutionary diversity in tooth patterning.  相似文献   

5.
The present study was undertaken to examine the localization of calbindin D28k (CB)-like immunoreactivity (-LI) during the root formation of the rat molar. In the adult rat, CB-LI was detected in some of the cells of the epithelial rest of Malassez at the bifurcational region and in certain cells between the root dentin and cementum at the apical region. These cells had indented nuclei and many tonofilaments, and cementocytes lacked CB-LI. Moreover, CB-LI was observed in the periodontal fibroblasts in the alveolar half of the apical region. During root formation, the cells in the Hertwig's epithelial root sheath (HERS) lacked CB-LI, but most fragmented cells along the root surface began to express CB-LI when HERS was disrupted. Preodontoblasts and odontoblasts at the apical portion of the root also showed CB-LI. After the formation of cellular cementum, the CB-immunoreactive (-IR) cells were entrapped between the root dentin and cementum in the apical portion of the root. The number of CB-IR cells at the root surface decreased gradually, while that between the root dentin and cementum increased. The fibroblasts in the periodontal ligament began to express CB-LI after commencement of the occlusion, and the number and the staining intensity of CB-IR fibroblasts increased gradually with the passage of time. The present results suggest that CB may play an important role in the survival of the epithelial cells, in the cellular responses of periodontal fibroblasts against mechanical forces caused by the occlusion, and in the initial mineralization by the odontoblasts through the regulation of intracellular Ca(2+) concentration.  相似文献   

6.
It is known that the dental follicle (DF) consists of progenitor cells that give rise to the cementum, periodontal ligament, and alveolar bone; but little information is available about the regulation of DF cell differentiation into either cementogenic or osteogenic cell lineages for the regeneration of diseased periodontal tissue. Here, we investigated the roles of DF, Hertwig’s epithelial root sheath (HERS), and pulp cells in the cementum and during alveolar bone formation. We cultured these cells; transplanted them alone or in combination into immunocompromised mice; and observed their effects at 6 and 12 weeks. Histological and immunohistochemical results revealed that DF cells formed cementum-like tissues with immunoreactivity to cementum-derived attached protein, bone sialoprotein, type I collagen, and alkaline phosphatase. In addition, HERS cells played a role in the induction and maturation of cementum-like tissues formed by DF cells. In contrast, implants of DF cells in the presence of pulp cells led to the formation of bone-like tissues. Interestingly, in the presence of both HERS and pulp cells, DF cells formed both cementum-like and bone-like tissues. We demonstrated that while HERS cells are able to induce DF cell differentiation into cementoblasts and promote cementum formation, pulp cells could direct DF cell differentiation into osteoblasts and enhance alveolar bone formation. These results suggest that the combined use of DF, HERS, and pulp cells could direct DF cell differentiation into cementoblasts and/or osteoblasts in vivo, thus providing a novel strategy for the successful repair and regeneration of diseased periodontal tissue.  相似文献   

7.
8.
9.
During tooth development, the inner and outer enamel epithelia fuse by mitotic activity to produce a bilayered epithelial sheath termed Hertwig’s epithelial root sheath (HERS). The epithelial rests of Malassez (ERM) are the developmental residues of HERS and remain in the adult periodontal ligament (PDL). Although the cellular regulation of the Ca2+-binding proteins parvalbumin, calbindin-D28k, and calretinin has been reported in the inner and outer enamel epithelia during tooth development, an involvement of Ca2+-binding proteins in the ERM has not so far been characterized. Among the three Ca2+-binding proteins tested (calbindin D28k, parvalbumin, calretinin), we have only been able to detect calretinin in a subpopulation of adult rat molar ERM, by using quantitative immunohistochemical and confocal immunofluorescence techniques. TrkA (a marker for ERM) is present in numerous epithelial cell clusters, whereas calretinin has been localized in the cytosol and perinuclear region of a subpopulation of TrkA-positive cells. We conclude that, in inner and outer enamel epithelial cells, Ca2+ is regulated by calbindin, parvalbumin, and calretinin during tooth development, whereas in the ERM of adult PDL, Ca2+ is regulated only by calretinin. The expression of Ca2+-binding proteins is restricted in a developmental manner in the ERM.  相似文献   

10.
Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth.  相似文献   

11.
目的:研究咬合创伤大鼠牙周组织中MCP-1、ICAM-1的表达情况。方法:12周龄雄性SD大鼠24只,随机分为4组(1个正常对照组和3个实验组),每组6只。正常对照组不作任何处理,实验组通过在大鼠左上颌第一磨牙颌面粘接树脂并内置不锈钢丝形成高出颌面0.6-0.8 mm的树脂层以建立同侧下颌咬合创伤实验动物模型,分别于建模后3、5、7 d处死各组大鼠,分离大鼠下颌组织,运用HE、Masson染色观察咬合创伤牙周组织形态变化,同时用免疫组织化学染色法检测MCP-1和ICAM-1的表达变化。结果:HE染色显示,正常组牙周膜纤维排列整齐,牙骨质表面较为平整,牙槽骨结构致密。实验组牙周膜纤维排列紊乱,牙周膜血管水肿充血、间隙改变,牙槽骨和牙骨质表面不平整,出现骨吸收。Masson染色显示,正常组牙周组织未见异常表现;实验组牙周膜纤维排列紊乱,可见水解断裂,局部有血流障碍和血管破裂。免疫组织化学显示,各实验组MCP-1和ICAM-1的表达变化均较正常对照组增多,差异有显著性(P0.05)。其中7 d组表达水平最高,与其他2组相比有统计学意义(P0.05)。结论:咬合创伤可引起大鼠牙周组织形态变化,MCP-1、ICAM-1的表达随时间呈现递增的趋势。  相似文献   

12.
Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malassez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development.  相似文献   

13.
The evolution of human periodontal tissues with ageing.   总被引:1,自引:0,他引:1  
In this research, the structural modifications with ageing of clinically healthy periodontal tissues were analyzed by means of polarization microscopy and morphometrical methods for light microscopy. The new findings may be summarized as follows. The periodontal ligament was found to be widened in the cervical and apical regions. The thickening of cementum with ageing was shown to be accompanied by a modification in the shape of Sharpey's fibres, which in the elderlies were wavy instead of straight as in the control. Lamellar bone, forming an osteone, was found to substitute in part for cementum in one tooth. These results are interpreted as indicating that: (1) late active eruption occurs in man, causing the observed modification in the thickness of periodontal ligament and cementum in the apical region and in the direction of Sharpey's fibres within cementum; (2) cementum may undergo renewal during lifetime and in this case bone may be deposited in contact with dentin.  相似文献   

14.
Regeneration of mineralized tissues affected by chronic diseases comprises a major scientific and clinical challenge. Periodontitis, one such prevalent disease, involves destruction of the tooth-supporting tissues, alveolar bone, periodontal-ligament and cementum, often leading to tooth loss. In 1997, it became clear that, in addition to their function in enamel formation, the hydrophobic ectodermal enamel matrix proteins (EMPs) play a role in the regeneration of these periodontal tissues. The epithelial EMPs are a heterogeneous mixture of polypeptides encoded by several genes. It was not clear, however, which of these many EMPs induces the regeneration and what mechanisms are involved. Here we show that a single recombinant human amelogenin protein (rHAM+), induced in vivo regeneration of all tooth-supporting tissues after creation of experimental periodontitis in a dog model. To further understand the regeneration process, amelogenin expression was detected in normal and regenerating cells of the alveolar bone (osteocytes, osteoblasts and osteoclasts), periodontal ligament, cementum and in bone marrow stromal cells. Amelogenin expression was highest in areas of high bone turnover and activity. Further studies showed that during the first 2 weeks after application, rHAM+ induced, directly or indirectly, significant recruitment of mesenchymal progenitor cells, which later differentiated to form the regenerated periodontal tissues. The ability of a single protein to bring about regeneration of all periodontal tissues, in the correct spatio-temporal order, through recruitment of mesenchymal progenitor cells, could pave the way for development of new therapeutic devices for treatment of periodontal, bone and ligament diseases based on rHAM+.  相似文献   

15.
SUMMARY Vertebrate teeth are attached to jaws by a variety of mechanisms, including acrodont, pleurodont, and thecodont modes of attachment. Recent studies have suggested that various modes of attachment exist within each subcategory. Especially squamates feature a broad diversity of modes of attachment. Here we have investigated tooth attachment tissues in the late cretaceous mosasaur Clidastes and compared mosasaur tooth attachment with modes of attachment found in other extant reptiles. Using histologic analysis of ultrathin ground sections, four distinct mineralized tissues that anchor mosasaur teeth to the jaw were identified: (i) an acellular cementum layer at the interface between root and cellular cementum, (ii) a massive cone consisting of trabecular cellular cementum, (iii) the mineralized periodontal ligament containing mineralized Sharpey's fibers, and (iv) the interdental ridges connecting adjacent teeth. The complex, multilayered attachment apparatus in mosasaurs was compared with attachment tissues in extant reptiles, including Iguana and Caiman . Based on our comparative analysis we postulate the presence of a quadruple-layer tissue architecture underlying reptilian tooth attachment, comprised of acellular cementum, cellular cementum, mineralized periodontal ligament, and interdental ridge (alveolar bone). We propose that the mineralization status of the periodontal ligament is a dynamic feature in vertebrate evolution subject to functional adaptation.  相似文献   

16.
During the process of organogenesis involving the developing rodent molar and incisor tooth organs, novel gene products termed enamel proteins are expressed by ectodermally-derived enamel organ epithelia at precise times and positions within the course of morphogenesis. The present studies were designed to identify the relative distribution of tryptophan-labeled, non-collagenous, epithelial-derived proteins associated with rat maxillary first molar crown (M') and initial root formation. Our experimental strategy was to utilize semi-quantitative autoradiography methods to compare and contrast the distribution of silver grains resulting from tryptophan incorporation into developing postnatal pups associated with enamel matrix, non-enamel occlusal cusp, Hertwig's Epithelial Root Sheath (HERS), and presumptive root furcation regions of M'. Five-day-old Wistar rats were injected with 14C-labeled tryptophan. Four animals were sacrificed at 15 minutes and then at 1, 2, 4, and 24 hour intervals following the administration of this essential aromatic amino acid. Following fixation and subsequent processing for autoradiography, semiquantitative analyses were performed of the silver grain distribution localized within selected regions of the developing M' tooth organs. All enamel organ epithelia were found to incorporate tryptophan and silver grains were identified (above background) in the extracellular matrices (ECM) of the enamel matrix, non-enamel occlusal cusp adjacent to the inner enamel epithelia, and the ECM (2-4, micron) adjacent to presumptive root furcation and HERS regions. Tryptophan incorporation was not significant in the odontoblasts or dentine ECM of the crown or forming presumptive root regions. These results support the hypothesis that inner enamel epithelia associated with rat molar crown formation, as well as HERS, synthesize tryptophan-labeled, non-collagenous, ECM molecules. We speculate that HERS participates in root development by possibly producing non-collagenous proteins for intermediate cementum formation.  相似文献   

17.
The periodontal ligament is the connective tissue that fills the space between the tooth and its bony socket. It is abundantly innervated by the sensory and sympathetic nerves. We first investigated the immunoreactivity of TrkA, which is a high-affinity receptor of nerve growth factor (NGF), in the periodontal ligament of rats. Immunoreactivity was observed at the epithelial cells in the cervical and furcation regions of the molars. These epithelial cells, which gather together to form clusters or networks, are known as the epithelial rests of Malassez. Immunoreactivity was not observed in other non-neuronal cells, such as osteoblasts, fibroblasts, odontoblasts, cementoblasts, endothelial cells, and/or osteoclasts. On the basis of these findings, we investigated the possible involvement of sensory nerve innervation in the immunoreactivity of the epithelial cells. Denervation of the inferior alveolar nerve resulted in a marked decrease in the distribution area and size of the clusters of immunoreactive cells compared with those of sham-operated rats. These findings suggest that sensory nerve innervation may have a regulatory role in maintenance of the epithelial rests of Malassez expressing TrkA in the periodontal ligament.  相似文献   

18.
19.
The developmental biology of cementum.   总被引:11,自引:0,他引:11  
In conclusion, we have reviewed an extensive literature on early cementogenesis and performed a detailed morphological and molecular analysis to illustrate and verify key issues in the current debate about epithelial and mesenchymal contributions to root cementum. We have demonstrated that prior to cementogenesis, Hertwig's epithelial root sheath disintegrates and dental follicle cells penetrate the epithelial layer to invade the root surface. Our studies confirmed that HERS became disrupted or disintegrated prior to cementum deposition. We visualized how mesenchymal cells from the dental follicle penetrated the HERS bilayer and deposited initial cementum, while immediately adjacent epithelial cells were separated from the root surface by a basal lamina and did not secrete any cementum. Human specimen from the Gottlieb collection indicated that HERS was removed from the root surface prior to cementum deposition. Our in situ hybridization and immolocalization data revealed that both amelogenin mRNAs and enamel proteins were restricted to the crown enamel and were absent from the root surface and from the cervical-most ameloblasts adjacent to the root margin. On Western blots, cementum protein extracts did not cross-react with amelogenin antibodies. Our studies in conjunction with our literature review together confirmed the classical theory of cementum as a dental follicle derived connective tissue that forms subsequent to HERS disintegration.  相似文献   

20.
Teeth are composed of two domains, the enamel-covered crown and cementum-covered root. The mechanism for determining the transition from crown to root is important for understanding root anomaly diseases. Hertwig?s epithelial root sheath (HERS) is derived from the dental epithelium and is known to drive the growth of root dentin and periodontal tissue. Some clinical cases of hypoplastic tooth root are caused by the cessation of HERS development. Understanding the mechanisms of HERS development will contribute to the study of the disease and dental regenerative medicine. However, the developmental biology of tooth root formation has not been fully studied, particularly regarding HERS formation. Here, we describe the mechanisms of HERS formation on the basis of analysis of cell dynamics using imaging and summarize how the growth factor and its receptor regulate cell behavior of the dental epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号