首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review describes the recent advances made in the studies of the microbial community of complex and undefined cheese starter cultures. We report on work related to the composition of the cultures at the level of genetic lineages, on the presence and activity of bacteriophages and on the population dynamics during cheese making and during starter culture propagation. Furthermore, the link between starter composition and starter functionality will be discussed. Finally, recent advances in predictive metabolic modelling of the multi-strain cultures will be discussed in the context of microbe-microbe interactions.  相似文献   

2.
The major function of lactic starter cultures in cheese making is to produce lactic and other organic acids from the carbohydrates present in milk. The activity of six starter cultures consisting of two Lactococcus lactis ssp. lactis , two Lactococcus lactis ssp. lactis biovar. diacetylactis and two Leuconostoc strains, was tested by monitoring the evolution of the organic acid composition of milk by a modified HPLC method. In addition, their performance as cheese starters was also tested. The HPLC method developed proved to be a precise tool to monitor the organic acid content. Thus, it can be used to follow the fermentation ability of starter cultures, providing information about the type of fermentation. The use of any of the six starters assayed is suggested for manufacturing Afuega'l Pitu cheese.  相似文献   

3.
The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it''s necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.  相似文献   

4.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (105 to 106 CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 104 CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

5.
Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi‐hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R‐IVET) assay in combination with a high‐throughput cheese‐manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real‐time monitoring of gene expression in cheese for up to 200 h after the cheese‐manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non‐coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.  相似文献   

6.
Undefined starter cultures are poorly characterized bacterial communities from environmental origin used in cheese making. They are phenotypically stable and have evolved through domestication by repeated propagation in closed and highly controlled environments over centuries. This makes them interesting for understanding eco-evolutionary dynamics governing microbial communities. While cheese starter cultures are known to be dominated by a few bacterial species, little is known about the composition, functional relevance, and temporal dynamics of strain-level diversity. Here, we applied shotgun metagenomics to an important Swiss cheese starter culture and analyzed historical and experimental samples reflecting 82 years of starter culture propagation. We found that the bacterial community is highly stable and dominated by only a few coexisting strains of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. lactis. Genome sequencing, metabolomics analysis, and co-culturing experiments of 43 isolates show that these strains are functionally redundant, but differ tremendously in their phage resistance potential. Moreover, we identified two highly abundant Streptococcus phages that seem to stably coexist in the community without any negative impact on bacterial growth or strain persistence, and despite the presence of a large and diverse repertoire of matching CRISPR spacers. Our findings show that functionally equivalent strains can coexist in domesticated microbial communities and highlight an important role of bacteria-phage interactions that are different from kill-the-winner dynamics.Subject terms: Microbial ecology, Applied microbiology  相似文献   

7.
AIMS: Isolation, characterization and identification of lactic acid bacteria (LAB) from artisanal Zlatar cheese during the ripening process and selection of strains with good technological characteristics. METHODS AND RESULTS: Characterization of LAB was performed based on morphological, physiological and biochemical assays, as well as, by determining proteolytic activity and plasmid profile. rep-polymerase chain reaction (PCR) analysis and 16S rDNA sequencing were used for the identification of LAB. PCR analysis was performed with specific primers for detection of the gene encoding nisin production. Strains Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis subsp. lactis, Enterococcus faecium and Enterococcus faecalis were the main groups present in the Zlatar cheese during ripening. CONCLUSIONS: Temporal changes in the species were observed during the Zlatar cheese ripening. Mesophilic lactobacilli are predominant microflora in Zlatar cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study we determined that Zlatar cheese up to 30 days old could be used as a source of strains for the preparation of potential starter cultures in the process of industrial cheese production. As the Serbian food market is adjusting to European Union regulations, the standardization of Zlatar cheese production by using starter culture(s) based on autochtonous well-characterized LAB will enable the industrial production of this popular cheese in the future.  相似文献   

8.
AIMS: The study evaluated the efficacy of four Mycobacterium avium subsp. paratuberculosis (MAP) culture media in suppressing commonly used starter cultures and typical nonstarter microflora present during the manufacture and ripening of Cheddar cheese, with a view to identify a suitable medium for the enumeration of MAP during laboratory-scale Cheddar production. METHODS AND RESULTS: Four Cheddar starter cultures and Cheddar cheese manufactured with these starters were inoculated onto Herrold's egg yolk medium (HEYM); HEYM supplemented with vancomycin, amphotericin B and nalidixic acid (HEYM/VAN); Middlebrook 7H10 agar containing polymyxin, amphotericin B, nalidixic acid, trimethoprim and azlocillin (PANTA) antibiotic supplement; and BACTEC 12B radiometric medium with and without a preliminary decontamination step (0.75% w/v hexadecylpyridinium chloride (HPC), 5 h). The inclusion of a decontamination step inhibited all Cheddar cheese starter and nonstarter micro-organisms. The medium 7H10/PANTA and to a lesser extent HEYM/VAN were effective inhibitors of cheese microflora when no decontamination step was employed. CONCLUSIONS: Middlebrook 7H10 medium, supplemented with PANTA antibiotics, suppressed all micro-organisms associated with ripening Cheddar cheese manufactured with pasteurized milk. SIGNIFICANCE AND IMPACT OF THE STUDY: A MAP culture medium has been identified, which may be used to enumerate this bacterium during the laboratory manufacture and ripening of Cheddar cheese and hence facilitate further research into the persistence of this pathogen in the product.  相似文献   

9.
Microbial communities play an important role in cheese ripening and determine the flavor and taste of different cheese types to a large extent. However, under adverse conditions human pathogens may colonize cheese samples during ripening and may thus cause severe outbreaks of diarrhoea and other diseases. Therefore in the present study we investigated the bacterial community structure of three raw ewe''s milk cheese types, which are produced without the application of starter cultures during ripening from two production sites based on fingerprinting in combination with next generation sequencing of 16S rRNA gene amplicons. Overall a surprisingly high diversity was found in the analyzed samples and overall up to 213 OTU97 could be assigned. 20 of the major OTUs were present in all samples and include mostly lactic acid bacteria (LAB), mainly Lactococcus, and Enterococcus species. Abundance and diversity of these genera differed to a large extent between the 3 investigated cheese types and in response to the ripening process. Also a large number of non LAB genera could be identified based on phylogenetic alignments including mainly Enterobacteriaceae and Staphylococcacae. Some species belonging to these two families could be clearly assigned to species which are known as potential human pathogens like Staphylococcus saprophyticus or Salmonella spp. However, during cheese ripening their abundance was reduced. The bacterial genera, namely Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Brevibacterium, Corynebacterium, Clostridium, Staphylococcus, Thermoanerobacterium, E. coli, Hafnia, Pseudomonas, Janthinobacterium, Petrotoga, Kosmotoga, Megasphaera, Macrococcus, Mannheimia, Aerococcus, Vagococcus, Weissella and Pediococcus were identified at a relative low level and only in selected samples. Overall the microbial composition of the used milk and the management of the production units determined the bacterial community composition for all cheese types to a large extend, also at the late time points of cheese ripening.  相似文献   

10.
The use of freeze-dried kefir coculture as a starter in the production of feta-type cheese was investigated. Maturation of the produced cheese at 4°C was monitored for up to 70 days, and the effects of the starter culture, the salting method, and the ripening process on quality characteristics were studied. The use of kefir coculture as a starter led to increased lactic acid concentrations and decreased pH values in the final product associated with significantly higher conversion rates compared to salted rennet cheese. Determination of bacterial diversity at the end of the ripening process in salted kefir and rennet cheeses by denaturing gradient gel electrophoresis technology, based on both DNA and RNA analyses, suggested a potential species-specific inhibition of members of the genera Staphylococcus and Psychrobacter by kefir coculture. The main active microbial associations in salted kefir cheese appeared to be members of the genera Pseudomonas and Lactococcus, while in salted rennet cheese, Oxalobacteraceae, Janthinobacterium, Psychrobacter, and Pseudomonas species were noted. The effect of the starter culture on the production of aroma-related compounds responsible for cheese flavor was also studied by the solid-phase microextraction-gas chromatography-mass spectrometry technique. Kefir coculture also appeared to extend the shelf life of unsalted cheese. Spoilage of kefir cheese was observed on the 9th and 20th days of preservation at 10 and 5°C, respectively, while spoilage in the corresponding rennet cheese was detected on the 7th and 16th days. Microbial counts during preservation of both types of unsalted cheese increased steadily and reached similar levels, with the exception of staphylococci, which were significantly lower in unsalted kefir cheese. All types of cheese produced with kefir as a starter were approved and accepted by the panel during the preliminary sensory evaluation compared to commercial feta-type cheese.  相似文献   

11.
The inhibitory effect of enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4, on Listeria monocytogenes strains Ohio and Scott A during themanufacture and ripening of Manchego cheese was investigated. Raw ewe's milk wasinoculated with ca 105 cfu ml−1 of L.monocytogenes and with 1% of a commercial lactic starter, 1% of an Ent. faecalis INIA 4 culture, or 1% of each culture. Manchego cheeses were manufactured according tousual procedures. Listeria monocytogenes Ohio counts decreased by 3 log units after8 h and by 6 log units after 7 d in cheese made from milk inoculated with Ent. faecalis INIA 4 or with both cultures, whereas no inhibition was recorded after 60 d in cheese made frommilk inoculated with commercial lactic starter. Listeria monocytogenes Scott A wasnot inhibited by enterocin 4 during cheese manufacture, but decreases of 1 log unit after 7 d andof 2 log units after 60 d were achieved in cheese made from milk inoculated with bothcommercial lactic starter and Ent. faecalis INIA 4.  相似文献   

12.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (10(5) to 10(6) CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 10(4) CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

13.
The aim of this work was to describe the yeast populations present during the manufacturing of Minas cheese of the region of Serra da Canastra, Minas Gerais state, Brazil. Canastra cheese is produced from raw cow’s milk at the farmhouse level using artisanal procedures and natural whey cultures as starters. Samples from 10 farms were studied, and they included: raw milk, natural starter, cheese curd before salting and cheese after 5 days of ripening. The most frequent yeasts in whey, curd and cheese were Debaryomyces hansenii, Kluyveromyces lactis, Kodamaea ohmeri and Torulaspora delbrueckii. Many yeast isolates were able to produce proteases, lipases and β-galactosidades. Production of these enzymes by yeasts in the cheese would contribute to the development of the characteristic flavor and smell during the ripening process.  相似文献   

14.
Cheddar cheese was prepared with Lactococcus lactis subsp. lactis MM217, a starter culture which contains pMC117 coding for pediocin PA-1. About 75 liters of pasteurized milk (containing ca. 3.6% fat) was inoculated with strain MM217 (ca. 106 CFU per ml) and a mixture of three Listeria monocytogenes strains (ca. 103 CFU per ml). The viability of the pathogen and the activity of pediocin in the cheese were monitored at appropriate intervals throughout the manufacturing process and during ripening at 8°C for 6 months. In control cheese made with the isogenic, non-pediocin-producing starter culture L. lactis subsp. lactis MM210, the counts of the pathogen increased to about 107 CFU per g after 2 weeks of ripening and then gradually decreased to about 103 CFU per g after 6 months. In the experimental cheese made with strain MM217, the counts of L. monocytogenes decreased to 102 CFU per g within 1 week of ripening and then decreased to about 10 CFU per g within 3 months. The average titer of pediocin in the experimental cheese decreased from approximately 64,000 arbitrary units (AU) per g after 1 day to 2,000 AU per g after 6 months. No pediocin activity (<200 AU per g) was detected in the control cheese. Also, the presence of pMC117 in strain MM217 did not alter the cheese-making quality of the starter culture, as the rates of acid production, the pH values, and the levels of moisture, NaCl, and fat of the control cheese and the experimental cheese were similar. Our data revealed that pediocin-producing starter cultures have significant potential for protecting natural cheese against L. monocytogenes.  相似文献   

15.
ABSTRACT

To produce processed cheese turning hardly brown during transportation and storage at room temperature, natural cheese showing less discoloration should be used as a raw material. The purpose of this study was to clarify the relationship between the lactose utilization of lactic acid bacteria and the browning of cheese during storage. Three type-cultures (Lactobacillus plantarum and Streptococcus thermophilus) and five isolates from Japanese pickles (Lactobacillus spp.) were used. Cheese curds inoculated with these bacteria were prepared and stored. The L. plantarum-inoculated curds showed smaller ΔE-values after storage, an indicator for the browning, compared to the others. Accumulation of galactose was observed in the curd to which S. thermophilus was inoculated. The sample showed larger ΔE-value after storage. These results showed the lactose utilization of bacteria affected galactose concentration in cheese and its browning during storage. L. plantarum might be a good starter for preparing cheese turning hardly brown.  相似文献   

16.
Use of thermophilic lactic starters in the dairy industry   总被引:2,自引:0,他引:2  
The use of thermophilic lactic starters in the dairy industry is discussed. The functions of the thermophilic lactic starters in cooked cheese production and its ripening, the bacteria of the starter cultures and various types of starters are described.  相似文献   

17.
Aims:  The influence of the cheese-making process, ripening conditions and primary starter on the viability and proteolytic activity of an adjunct culture of Lactobacillus plantarum I91 was assessed in two miniature cheese models, representative of Cremoso Argentino and Cheddar cheeses.
Methods and Results:  Cheeses with and without adjunct culture were made under controlled microbiological conditions and sampled during ripening for physicochemical and microbiological analyses. The addition of lactobacilli neither contributed to acid production nor caused changes to the composition of the cheeses. The strain studied exhibited good development and survival and showed a similar growth pattern in both cheese matrices. The adjunct culture caused changes to secondary proteolysis of both cheese types, which were evidenced by modification of peptide profiles and the increase in the levels of some individual amino acids as well as the total content of free amino acids. The changes observed were consistent with the acceleration of proteolysis in the two cheese models assayed.
Conclusion:  Lactobacillus plantarum I91 has desirable and robust technological properties, which makes it a suitable adjunct culture for cheese-making.
Significance and Impact of the Study:  Other cultures and environmental conditions prevailing in the food may affect the viability of adjunct cultures and its biochemical activities; this is the first report describing the successful performance of an adjunct culture of Lact. plantarum I91 in two different model cheese systems.  相似文献   

18.
Aims:  Genotypic and technological characterization of wild lactococci isolated from artisanal Manchego cheese during the ripening process for selection of suitable starter cultures.
Methods and Results:  A total of 114 isolates of lactococci were typed using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Sixteen distinct RAPD-PCR patterns, at a similarity level of 73%, were obtained. On the basis of species-specific PCR reaction, the isolates were assigned to the species Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris with L. lactis subsp. lactis being predominant at both dairies. Twenty-six isolates were technologically characterized to select those with the best properties. Most of them showed good technological properties although some could produce tyramine.
Conclusions:  The presence of coincident genotypes at both dairies has been demonstrated, which would suggest that they are well adapted to the Manchego cheese environment. Interesting differences were found in the technological characterization and the potential role of autochthonous lactococci strains as starter culture has been displayed.
Significance and Impact of the Study:  The great economic importance of Manchego cheese encouraged a deeper knowledge of its microbiota, to select strains with the best properties to use as starter cultures in industrial Manchego cheeses, preserving the autochthonous characteristics.  相似文献   

19.
The review focusses on the use of genetic techniques to manipulate bacteria that are important to the dairy industry. Both classical and molecular approaches have been used to improve strains involved in yoghurt and cheese production. Examples are provided of methods for; increasing efficiency of substrate conversion, regulating the production of flavour enhancing metabolites, and developing starter cultures resistant to bacteriophage and bacteriocin attack. The possible applications of these systems are discussed  相似文献   

20.
In this study, we have investigated the cheese starter culture as a microbial community through a question: can the metabolic behaviour of a co‐culture be explained by the characterized individual organism that constituted the co‐culture? To address this question, the dairy‐origin lactic acid bacteria Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus and Leuconostoc mesenteroides, commonly used in cheese starter cultures, were grown in pure and four different co‐cultures. We used a dynamic metabolic modelling approach based on the integration of the genome‐scale metabolic networks of the involved organisms to simulate the co‐cultures. The strain‐specific kinetic parameters of dynamic models were estimated using the pure culture experiments and they were subsequently applied to co‐culture models. Biomass, carbon source, lactic acid and most of the amino acid concentration profiles simulated by the co‐culture models fit closely to the experimental results and the co‐culture models explained the mechanisms behind the dynamic microbial abundance. We then applied the co‐culture models to estimate further information on the co‐cultures that could not be obtained by the experimental method used. This includes estimation of the profile of various metabolites in the co‐culture medium such as flavour compounds produced and the individual organism level metabolic exchange flux profiles, which revealed the potential metabolic interactions between organisms in the co‐cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号