首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gu XY  Kianian SF  Foley ME 《Genetics》2005,171(2):695-704
Association of seed dormancy with shattering, awn, and black hull and red pericarp colors enhances survival of wild and weedy species, but challenges the use of dormancy genes in breeding varieties resistant to preharvest sprouting. A phenotypic selection and recurrent backcrossing technique was used to introduce dormancy genes from a wild-like weedy rice to a breeding line to determine their effects and linkage with the other traits. Five generations of phenotypic selection alone for low germination extremes simultaneously retained dormancy alleles at five independent QTL, including qSD12 (R(2) > 50%), as determined by genome-wide scanning for their main and/or epistatic effects in two BC(4)F(2) populations. Four dormancy loci with moderate to small effects colocated with QTL/genes for one to three of the associated traits. Multilocus response to the selection suggests that these dormancy genes are cumulative in effect, as well as networked by epistases, and that the network may have played a "sheltering" role in maintaining intact adaptive haplotypes during the evolution of weeds. Tight linkage may prevent the dormancy genes from being used in breeding programs. The major effect of qSD12 makes it an ideal target for map-based cloning and the best candidate for imparting resistance to preharvest sprouting.  相似文献   

2.
The availability of a complete peach genome assembly and three different peach genome sequences created by our group provide new opportunities for application of genomic data and can improve the power of the classical Quantitative Trait Loci (QTL) approaches to identify candidate genes for peach disease resistance. Brown rot caused by Monilinia spp., is the most important fungal disease of stone fruits worldwide. Improved levels of peach fruit rot resistance have been identified in some cultivars and advanced selections developed in the UC Davis and USDA breeding programs. Whole genome sequencing of the Pop-DF parents lead to discovery of high-quality SNP markers for QTL genome scanning in this experimental population. Pop-DF created by crossing a brown rot moderately resistant cultivar ‘Dr. Davis’ and a brown rot resistant introgression line, ‘F8,1–42’, derived from an initial almond × peach interspecific hybrid, was evaluated for brown rot resistance in fruit of harvest maturity over three seasons. Using the SNP linkage map of Pop-DF and phenotypic data collected with inoculated fruit, a genome scan for QTL identified several SNP markers associated with brown rot resistance. Two of these QTLs were placed on linkage group 1, covering a large (physical) region on chromosome 1. The genome scan for QTL and SNP effects predicted several candidate genes associated with disease resistance responses in other host-pathogen systems. Two potential candidate genes, ppa011763m and ppa026453m, may be the genes primarily responsible for M. fructicola recognition in peach, activating both PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. Our results provide a foundation for further genetic dissection, marker assisted breeding for brown rot resistance, and development of peach cultivars resistant to brown rot.  相似文献   

3.
4.
Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidate genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.  相似文献   

5.
Dormancy is a condition that delays or inhibits growth in seed, vegetative buds, and floral buds. In peach, seed germination occurs when seed accumulate sufficient stratification and growing degree hours to break dormancy and begin growing. Correlations have been reported between mean seed stratification requirements and mean bud chilling requirements among Prunus families, but an individual seed’s germination date and subsequent vegetative and floral bud break date are not correlated. Prior to this study, the genetic factors involved in regulating seed dormancy and their location on the peach genomic map were unknown. Segregating F2 seed were collected from a high?×?low chill F1 peach hybrid in 2005, 2006, and 2008. Germination date and growth habit was measured after the stratification requirement of the 2005 seed was fully met. The seed collected in 2006 and 2008 received varying amounts of stratification, which enabled data on stratification requirement, heat requirement, and growth habit to be collected. Genomic DNA was extracted from seedling leaf tissue and screened with SSR markers selected from the Prunus reference map at an average resolution of 20 cM. Seed dormancy quantitative trait loci (QTLs) were detected on G1, G4, G6/8, and G7. The QTLs detected on G6/8 and G7 were discovered in the same region as QTLs associated with floral bud chilling requirement and bloom time in peach.  相似文献   

6.
The identification of genes involved in variation of peach fruit quality would assist breeders in creating new cultivars with improved fruit quality. Major genes and quantitative trait loci (QTLs) for physical and chemical components of fruit quality have already been detected, based on the peach [Prunus persica (L.) Batsch] cv. Ferjalou Jalousia® (low-acid peach) 2 cv. Fantasia (normally-acid nectarine) F2 intraspecific cross. Our aim was to associate these QTLs to structural genes using a candidate gene/QTL approach. Eighteen cDNAs encoding key proteins in soluble sugar and organic acid metabolic pathways as well as in cell expansion were isolated from peach fruit. A single-strand conformation polymorphism strategy based on specific cDNA-based primers was used to map the corresponding genes. Since no polymorphism could be detected in the Ferjalou Jalousia® 2 Fantasia population, gene mapping was performed on the almond [Prunus amygdalus (P. dulcis)] cv. Texas 2 peach cv. Earlygold F2 interspecific cross from which a saturated map was available. Twelve candidate genes were assigned to four linkage groups of the peach genome. In a second step, the previous QTL detection was enhanced by integrating anchor loci between the Ferjalou Jalousia® 2 Fantasia and Texas 2 Earlygold maps and data from a third year of trait assessment on the Ferjalou Jalousia® 2 Fantasia population. Comparative mapping allowed us to detect a candidate gene/QTL co-location. It involved a cDNA encoding a vacuolar H+-pyrophosphatase (PRUpe;Vp2) that energises solute accumulation, and QTLs for sucrose and soluble solid content. This preliminary result may be the first step in the future development of marker-assisted selection for peach fruit sucrose and soluble solid content.  相似文献   

7.
Black root rot (BRR), incited by the soilborne pathogen Thielaviopsis basicola has the potential to cause significant economic loss in cotton (Gossypium spp.) production. Cultivated tetraploids of cotton (G. hirsutum and G. barbadense) are susceptible although resistant types have been identified in a possible tetraploid progenitor, G. herbaceum. Genetic mapping was used to detect the chromosomal locations of quantitative trait loci (QTL) that confer resistance to the BRR pathogen. A population of F2 individuals (G. herbaceum × G. arboreum) and F2:3 progeny families were examined. Phenotypic variation between resistant and susceptible reactions could be explained partly by three QTL. The BRR5.1, BRR9.1, and BRR13.1 QTL each explained 19.1, 10.3 and 8.5% of the total phenotypic variation, respectively. The combination of all three in a single genetic model explained 32.7% of the phenotypic variation. Comparative analysis was conducted on significant QTL regions to deduce the cotton–Arabidopsis synteny relationship and examine the correspondence between BRR QTL and Arabidopsis pathogen defense genes. Totally 20 Arabidopsis synteny segments corresponded within one of three BRR QTL regions. Each synteny segment contains many potential Arabidopsis candidate genes. A total of 624 Arabidopsis genes, including 22 pathogen defense and 36 stress response genes, could be placed within the syntenic regions corresponding to the BRR QTL. Fine mapping is needed to delineate each underlying BRR R-gene and possible Arabidopsis orthologs. Research and breeding activities to examine each QTL and underlying genes in Upland cotton (G. hirsutum) are ongoing. Chen Niu, Harriet E. Lister, and Bay Nguyen contributed equally to this work.  相似文献   

8.
9.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

10.
11.
Abscisic acid (ABA) sensitivity in embryos is one of the key factors in the seed dormancy of wheat. Many ABA signaling genes have been isolated in Arabidopsis, while only a few wheat homologues have been identified. In the present study, diploid wheat homologues to Arabidopsis ABA signaling genes were identified by in silico analysis, and mapped them using a population of diploid wheat recombinant inbred lines derived from a cross between Triticum monococcum (Tm) and T. boeoticum (Tb). Four diploid wheat homologues, TmVP1, TmABF, TmABI8 and TmERA1 were located on chromosome 3Am and TmERA3 was on the centromere region of chromosome 5Am. In two consecutive year trials, one major QTL on the long arm of 5Am, two minor QTLs on the long arm of 3Am and one minor QTL on the long arm of 4Am were detected. The 5Am QTL explained 20–27% of the phenotypic variations and the other three QTLs each accounted for approximately 10% of the phenotypic variations. Map positions of the loci of TmABF and TmABI8 matched the LOD peaks of the two QTLs on 3Am, indicating that these two homologues are possible candidate genes for seed dormancy QTLs. Moreover, we have found two SNPs result in amino acid substitutions in TmABF between Tb and Tm. Comparison of the marker positions of QTLs for seed dormancy of barley revealed that the largest QTL on 5Am may be orthologous to the barley seed dormancy QTL, SD1, whereas there seems no orthologous QTL to the corresponding barley SD2 locus. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies ‘Regina’ × ‘Garnet’ and ‘Regina’ × ‘Lapins’, and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.  相似文献   

14.
15.

Key message

Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis.

Abstract

Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines “Muromskij” (early flowering) and “9930” (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.  相似文献   

16.
Seed dormancy in rice interrelates to the weedy characteristics shattering, awn, black hull color, and red pericarp color. A cross between the weedy strain SS18-2 and the breeding line EM93-1 was developed to investigate the genetic basis and adaptive significance of these interrelationships. These characteristics or their components differed in average degree of dominance from –0.8 to 1.5, in heritability from 0.5 to 0.96, and in their contribution to phenotypic or genotypic variation in dormancy by up to 25%. Five dormancy, four shattering, and three awn-length quantitative trait loci (QTLs) were detected in the BC1 population replicated in 2 years. Two QTLs for hull color were identified, and the SS18-2-derived and EM93-1-derived alleles increased the intensity of black, and red or yellow pigmentations, respectively. The only QTL for pericarp color co-located with the red pericarp gene Rc, with the SS18-2-derived allele increasing the intensity of black and red pigmentations. Four of the five dormancy QTLs were flanked or bracketed by one to four QTLs for the interrelated characteristics. The QTL organization pattern indicates the central role of seed dormancy in adaptive syndromes for non-domesticated plants, implies that the elimination of dormancy from cultivars could arise from the selections against multiple interrelated characteristics, and challenges the use of dormancy genes at these loci in breeding varieties for resistance to pre-harvest sprouting (PHS). However, another QTL (qSD12) provides candidate gene(s) for PHS resistance because it has a large effect in the population and it is independent of the loci for interrelated characteristics.  相似文献   

17.
Regions of the genome affecting physical and chemical wood properties (quantitative trait loci (QTL)), as well as growth, were identified using a clonally replicated, outbred F2 family (112 genotypes, each with two ramets) of Eucalyptus globulus, planted in a field trial in north-west Tasmania. Traits studied were growth (assessed by stem diameter), wood density, cellulose content, pulp yield and lignin content. These traits are important in breeding for pulpwood, and will be important in breeding for carbon sequestration and biofuel production. Between one and four QTL were located for each trait, with each QTL explaining between 4% and 12% of the phenotypic variation. Several QTL for chemical wood properties were co-located, consistent with their high phenotypic correlations, and may reflect pleiotropic effects of the same genes. In contrast, QTL for density and lignin content with overlapping confidence intervals were considered to be due to independent genes, since the QTL effects were inherited from different parents. The inclusion of fully informative microsatellites on the linkage map allowed the determination of homology at the linkage group level between QTL and candidate genes in different pedigrees of E. globulus and different eucalypt species. None of the candidate genes mapped in comparable studies co-located with our major QTL for wood chemical properties, arguing that there are important candidate genes yet to be discovered.  相似文献   

18.
In this study, a rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed dormancy (SD) at 4 (early), 5 (middle) and 6 (late) weeks after heading stages. Dynamic analysis showed that the indica IR28 variety tended to have deeper dormancy than the japonica Daguandao at the middle and late development stages. The level of SD decreased with the process of seed development. The significant interaction between heading date (HD) and SD occurred only in those seeds collected at the early development stage. A total of nine additive quantitative trait loci (QTLs) and eight epistatic QTLs for SD were identified at three seed development stages. Of them, one additive and four epistatic QTLs were identified for the early stage, six additive and one epistatic QTL for the middle stage and two additive and three epistatic QTLs for the late stage. The phenotypic variation explained by each additive and epistatic QTL ranged from 5.8 to 30.6 % and from 3.8 to 13.1 %, respectively. Compared with the additive QTLs, epistatic interactions were much more important for SD at the early and late development stages. Two major additive QTLs, qSD3.1 and qSD4.1, were identified; each QTL could explain more than 20 % of the total phenotypic variance and each dormancy-enhancing allele could decrease the germination percentage by about 10 %. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSD1.2, qSD2.1, qSD3.2, qSD4.1 and qSD9.1, might represent novel genes. One QTL identified here, qHD1, and nine QTLs identified in previous studies for HD were co-located with our QTLs for SD, which indicated that the significant correlation between SD and HD might be due to the linkage of QTLs for SD and HD. Four RILs with deep dormancy at development stages but non-dormancy after post-ripening under different germination conditions were selected. Using the selected RILs, three cross combinations of SD for the development of RIL populations were predicted. The selected RILs and the identified QTLs might be applicable for the improvement of pre-harvest sprouting tolerance by marker-assisted selection in rice.  相似文献   

19.
Quantitative Trait Loci (QTL) analyses in immortal populations are a powerful method for exploring the genetic mechanisms that control interactions of organisms with their environment. However, QTL analyses frequently do not culminate in the identification of a causal gene due to the large chromosomal regions often underlying QTLs. A reasonable approach to inform the process of causal gene identification is to incorporate additional genome-wide information, which is becoming increasingly accessible. In this work, we perform QTL analysis of the shade avoidance response in the Bayreuth-0 (Bay-0, CS954) x Shahdara (Sha, CS929) recombinant inbred line population of Arabidopsis. We take advantage of the complex pleiotropic nature of this trait to perform network analysis using co-expression, eQTL and functional classification from publicly available datasets to help us find good candidate genes for our strongest QTL, SAR2. This novel network analysis detected EARLY FLOWERING 3 (ELF3; AT2G25930) as the most likely candidate gene affecting the shade avoidance response in our population. Further genetic and transgenic experiments confirmed ELF3 as the causative gene for SAR2. The Bay-0 and Sha alleles of ELF3 differentially regulate developmental time and circadian clock period length in Arabidopsis, and the extent of this regulation is dependent on the light environment. This is the first time that ELF3 has been implicated in the shade avoidance response and that different natural alleles of this gene are shown to have phenotypic effects. In summary, we show that development of networks to inform candidate gene identification for QTLs is a promising technique that can significantly accelerate the process of QTL cloning.  相似文献   

20.

Background

Ear size and shape are distinct conformation characteristics of pig breeds. Previously, we identified a significant quantitative trait locus (QTL) influencing ear surface on pig chromosome 5 in a White Duroc × Erhualian F2 resource population. This QTL explained more than 17% of the phenotypic variance.

Methods

Four new markers on pig chromosome 5 were genotyped across this F2 population. RT-PCR was performed to obtain expression profiles of different candidate genes in ear tissue. Standard association test, marker-assisted association test and F-drop test were applied to determine the effects of single nucleotide polymorphisms (SNP) on ear size. Three synthetic commercial lines were also used for the association test.

Results

We refined the QTL to an 8.7-cM interval and identified three positional candidate genes i.e. HMGA2, SOX5 and PTHLH that are expressed in ear tissue. Seven SNP within these three candidate genes were selected and genotyped in the F2 population. Of the seven SNP, HMGA2 SNP (JF748727: g.2836 A > G) showed the strongest association with ear size in the standard association test and marker-assisted association test. With the F-drop test, F value decreased by more than 97% only when the genotypes of HMGA2 g.2836 A > G were included as a fixed effect. Furthermore, the significant association between g.2836 A > G and ear size was also demonstrated in the synthetic commercial Sutai pig line. The haplotype-based association test showed that the phenotypic variance explained by HMGA2 was similar to that explained by the QTL and at a much higher level than by SOX5. More interestingly, HMGA2 is also located within the dog orthologous chromosome region, which has been shown to be associated with ear type and size.

Conclusions

HMGA2 was the closest gene with a potential functional effect to the QTL or marker for ear size on chromosome 5. This study will contribute to identify the causative gene and mutation underlying this QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号