首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article documents the addition of 139 microsatellite marker loci and 90 pairs of single‐nucleotide polymorphism sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Aglaoctenus lagotis, Costus pulverulentus, Costus scaber, Culex pipiens, Dascyllus marginatus, Lupinus nanus Benth, Phloeomyzus passerini, Podarcis muralis, Rhododendron rubropilosum Hayata var. taiwanalpinum and Zoarces viviparus. These loci were cross‐tested on the following species: Culex quinquefasciatus, Rhododendron pseudochrysanthum Hay. ssp. morii (Hay.) Yamazaki and R. pseudochrysanthum Hayata. This article also documents the addition of 48 sequencing primer pairs and 90 allele‐specific primers for Engraulis encrasicolus.  相似文献   

2.
Genetic diversity is essential for species to sustain their populations and evolutionary potential. In order to develop effective conservation strategies for rare species, it is necessary to understand differences in patterns of genetic diversity between common and rare species. Data about population genetic structure is important to design effective conservation strategies for rare species. In this study, we compared the genetic diversity and population genetic structure of a common species, Rhododendron weyrichii, to those of two rare species, Rhododendron sanctum and Rhododendron amagianum, with different geographic distributions. We analyzed five microsatellite loci in 16 populations of R. weyrichii, 9 populations of R. sanctum, and 6 populations of R. amagianum. As expected, the level of genetic diversity indicated by allelic richness and gene diversity was lower for the rare species R. sanctum than for the common species R. weyrichii. However, there was no statistically significant difference in genetic diversity between R. weyrichii and the other rare species, R. amagianum. Analyses of the isolation-by-distance pattern, neighbor-joining trees, and Bayesian clustering indicated that R. sanctum had a strong population genetic structure whereas R. amagianum exhibited very weak genetic structure among populations and that there was moderate population genetic structure for R. weyrichii. Therefore, the degree and pattern of population genetic structure in each species was unrelated to its rarity and instead merely reflected its geographic distribution.  相似文献   

3.

Background  

A complex of incipient species with different degrees of morphological or ecological differentiation provides an ideal model for studying species divergence. We examined the phylogeography and the evolutionary history of the Rhododendron pseudochrysanthum s. l.  相似文献   

4.
A network of 92 pedigreed ex situ conservation plantings of Pinus tecunumanii, established as replicated progeny within provenance trials, is used to present a principal components-based analysis that illustrates the climatic preferences of 23 populations from the species’ native range. This meta-analysis quantifies changes in the relative productivity, assessed as individual-tree volume, of populations across climatic gradients and associates the preference of a population with increased volume production along the climatic gradient. Clustering and ordination on the matrix containing estimates of change in productivity for each population summarise differentials in productivity associated with climatic gradients. The preference of populations along principal components therefore reflects the adaptive profiles of populations, which may be used with breeding-value estimates from routine genetic evaluations to assist with the development of deployment populations targeting different environments. As well, the approach may be used to test whether the preference of a population, estimated as population loadings for growth differentials, is affected by the climate in the native range of the population. This relationship may be interpreted as an estimate of how much local climate shapes the adaptive profiles of populations. The amount and seasonality of precipitation most clearly differentiate the adaptive profiles of populations, with less variation in the population responses explained by temperature differentiation. As expected from type-B correlation estimates, most populations exhibited small changes in relative productivity across climatic gradients. However, patterns of similarities in adaptive profiles among populations were evident using spatial orientation to display population responses to the climatic variables experienced in the provenance trials. Clustering and ordination of population responses derived from empirical data served to identify populations that responded positively or negatively to climatic variables; this information may help guide conservation genetics efforts, direct the deployment of germplasm, or identify seed sources that are sensitive to changes in climatic variables. Linking response patterns to the climatic data from the native range of each population indicated little effect of local climate shaping adaptive profiles.  相似文献   

5.
Geographic and environmental isolations of islands and the mainland offer excellent opportunity to investigate colonization and survival dynamics of island populations. We inferred and compared evolutionary processes and the demographic history of Rhododendron tsusiophyllum, in the Izu Islands and the much larger island Honshu, treated here as the mainland, using thousands of nuclear SNPs obtained by ddRAD-seq from eight populations of R. tsusiophyllum and three populations of R. tschonoskii as an outgroup. Phylogenetic relationships and their habitats suggest that R. tsusiophyllum had evolved and migrated from cold north to warm south regions. We detected clear genetic divergence among populations in three regions of Honshu and the Izu Islands, suggesting restricted migration between them due to isolated habitats on mountains even in the mainland. The three regions have different changes in effective population size, especially, genetic diversity and population size of the Izu Islands are small compared to the others. Further, habitats of populations in the Izu Islands are warmer than those in Honshu, suggesting that they have undergone adaptive evolution. Our study provides evidences of montane rather than insular isolation on genetic divergence, survival of populations and significance of adaptive evolution for island populations with small population size and low genetic diversity, despite close proximity to mainland populations.Subject terms: Genetic variation, Plant evolution, Conservation biology  相似文献   

6.
The adaptive potential of a population defines its importance for species survival in changing environmental conditions such as global climate change. Very few empirical studies have examined adaptive potential across species'' ranges, namely, of edge vs core populations, and we are unaware of a study that has tested adaptive potential (namely, variation in adaptive traits) and measured performance of such populations in conditions not currently experienced by the species but expected in the future. Here we report the results of a Triticum dicoccoides population study that employed transplant experiments and analysis of quantitative trait variation. Two populations at the opposite edges of the species range (1) were locally adapted; (2) had lower adaptive potential (inferred from the extent of genetic quantitative trait variation) than the two core populations; and (3) were outperformed by the plants from the core population in the novel environment. The fact that plants from the species arid edge performed worse than plants from the more mesic core in extreme drought conditions beyond the present climatic envelope of the species implies that usage of peripheral populations for conservation purposes must be based on intensive sampling of among-population variation.  相似文献   

7.
Ecological speciation has long been noted as a central topic in the field of evolutionary biology, and investigation into the relative importance of ecological and geographical factors is becoming increasingly emphasized. We surveyed genetic variation of 277 samples from 25 populations of nine Rhododendron species within Tsutsusi subgenus in Taiwan using simple sequence repeats of expressed sequence tags. Bayesian clustering revealed four genetic lineages: (1) the Rhododendron simsii, Rhododendron kanehirai, and Rhododendron nakaharae lineage (lineage 1); (2) the Rhododendron longiperulatum, Rhododendron breviperulatum, and Rhododendron noriakianum lineage (lineage 2); (3) the Rhododendron rubropilosum lineage (lineage 3); and (4) the Rhododendron oldhamii lineage (lineage 4). Asymmetric introgressions were found from lineage 3 into lineages 1 and 2 (introgressed lineages). Genetic admixture of non-R. oldhamii species was also revealed by a neighbor-joining tree. Variation partitioning showed that environment explained much larger portions of genetic variation than geography between non-introgressed lineages (i.e., between R. oldhamii and other lineages). However, the Mantel and partial Mantel tests and the multiple matrix regression with randomization found that isolation-by-distance played a more important role than isolation-by-environment (IBE) in contributing to genetic variation in most between lineage comparisons. Nevertheless, strong IBE was found when compared between non-introgressed lineages of R. oldhamii and R. rubropilosum, suggesting post-speciation ecological divergence. Several environmental variables, including annual mean temperature, aspect, isothermality, seasonal precipitation, slope, and soil pH, could be important ecological drivers involved in reproductive isolation between R. oldhamii and non-R. oldhamii species within the Tsutsusi subgenus.  相似文献   

8.
One new species, Rhododendron subroseum Xiang Chen & Jiayong Huang, and one new variety, R. denudatum var. glabriovarium Xiang Chen & Xun Chen (Ericaceae), from the Guizhou Province, China are described and illustrated. Rhododendron subroseum is most similar to R. morii from which it differs mainly by having glandular branchlets, a subcordate leaf blade base and a mucronate leaf blade apex, a less floriferous inflorescence, a campanulate to broadly‐campanulate corolla, and a glandular‐hairy style. Rhododendron denudatum var. glabriovarium differs from R. denudatum var. denudatum mainly by having a glabrous ovary. Both of the new taxa are quite rare and therefore their protection is highly desired.  相似文献   

9.
While poleward species migration in response to recent climatic warming is widely documented, few studies have examined entire range responses of broadly distributed sessile organisms, including changes on both the trailing (equatorward) and the leading (poleward) range edges. From a detailed population census throughout the entire geographical range of Aloe dichotoma Masson, a long-lived Namib Desert tree, together with data from repeat photographs, we present strong evidence that a developing range shift in this species is a 'fingerprint' of anthropogenic climate change. This is explained at a high level of statistical significance by population level impacts of observed regional warming and resulting water balance constraints. Generalized linear models suggest that greater mortalities and population declines in equatorward populations are virtually certainly the result, due to anthropogenic climate change, of the progressive exceedance of critical climate thresholds that are relatively closer to the species' tolerance limits in equatorward sites. Equatorward population declines are also broadly consistent with bioclimatically modelled projections under anticipated anthropogenic climate change but, as yet, there is no evidence of poleward range expansion into the area predicted to become suitable in future, despite good evidence for positive population growth trends in poleward populations. This study is among the first to show a marked lag between trailing edge population extinction and leading edge range expansion in a species experiencing anthropogenic climate change impacts, a pattern likely to apply to most sessile and poorly dispersed organisms. This provides support for conservative assumptions of species' migration rates when modelling climate change impacts for such species. Aloe dichotoma 's response to climate change suggests that desert ecosystems may be more sensitive to climate change than previously suspected.  相似文献   

10.
Climate warming threatens the survival of species at their warm, trailing‐edge range boundaries but also provides opportunities for the ecological release of populations at the cool, leading edges of their distributions. Thus, as the climate warms, leading‐edge populations are expected to utilize an increased range of habitat types, leading to larger population sizes and range expansion. Here, we test the hypothesis that the habitat associations of British butterflies have expanded over three decades of climate warming. We characterize the habitat breadth of 27 southerly distributed species from 77 monitoring transects between 1977 and 2007 by considering changes in densities of butterflies across 11 habitat types. Contrary to expectation, we find that 20 of 27 (74%) butterfly species showed long‐term contractions in their habitat associations, despite some short‐term expansions in habitat breadth in warmer‐than‐usual years. Thus, we conclude that climatic warming has ameliorated habitat contractions caused by other environmental drivers to some extent, but that habitat degradation continues to be a major driver of reductions in habitat breadth and population density of butterflies.  相似文献   

11.

Background and Aims

Knowledge on how climate-induced range shifts might affect natural selection is crucial to understand the evolution of species ranges.

Methods

Using historical demographic perspectives gathered from regional-scale phylogeography on the alpine herb Biscutella laevigata, indirect inferences on gene flow and signature of selection based on AFLP genotyping were compared between local populations persisting at the trailing edge and expanding at the leading edge.

Key Results

Spatial autocorrelation revealed that gene flow was two times more restricted at the trailing edge and genome scans indicated divergent selection in this persisting population. In contrast, no pattern of selection emerged in the expanding population at the leading edge.

Conclusions

Historical effects may determine different architecture of genetic variation and selective patterns within local populations, what is arguably important to understand evolutionary processes acting across the species ranges.  相似文献   

12.
Despite the widespread use of ecological niche models (ENMs) for predicting the responses of species to climate change, these models do not explicitly incorporate any population‐level mechanism. On the other hand, mechanistic models adding population processes (e.g. biotic interactions, dispersal and adaptive potential to abiotic conditions) are much more complex and difficult to parameterize, especially if the goal is to predict range shifts for many species simultaneously. In particular, the adaptive potential (based on genetic adaptations, phenotypic plasticity and behavioral adjustments for physiological responses) of local populations has been a less studied mechanism affecting species’ responses to climatic change so far. Here, we discuss and apply an alternative macroecological framework to evaluate the potential role of evolutionary rescue under climate change based on ENMs. We begin by reviewing eco‐evolutionary models that evaluate the maximum sustainable evolutionary rate under a scenario of environmental change, showing how they can be used to understand the impact of temperature change on a Neotropical anuran species, the Schneider's toad Rhinella diptycha. Then we show how to evaluate spatial patterns of species’ geographic range shift using such models, by estimating evolutionary rates at the trailing edge of species distribution estimated by ENMs and by recalculating the relative amount of total range loss under climate change. We show how different models can reduce the expected range loss predicted for the studied species by potential ecophysiological adaptations in some regions of the trailing edge predicted by ENMs. For general applications, we believe that parameters for large numbers of species and populations can be obtained from macroecological generalizations (e.g. allometric equations and ecogeographical rules), so our framework coupling ENMs with eco‐evolutionary models can be applied to achieve a more accurate picture of potential impacts from climate change and other threats to biodiversity.  相似文献   

13.
The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities.  相似文献   

14.
Peripheral populations may be crucial for understanding processes underlying adaptive genetic variation. Their evolution and ecology are driven by various genetic and demographic processes, such as selection, gene flow and bottleneck. Peripheral populations often experience a reduction in density resulting in the Allee effect. The presence of interfertile species increases the opportunity for hybridisation, which allows for a rescue from the Allee effect, but at the risk of genetic extinction through introgression. In this article we investigated a peripheral population of Quercus pubescens, a European tree species. The study population is located in Poland, several hundred kilometres northwards from the main species range. Due to geographic separation, the study population exists under strong pressure of introgression from potentially inter-fertile Q. petraea and Q. robur, which are the only common oaks in Poland. The intermediate morphology between typical Q. pubescens and a common oak species found in the study population supports the introgression hypothesis, which could be in line with the earlier studies of this species complex conducted in the main range of Q. pubescens. Alternatively, the intermediate morphology could reflect the founder effect or selection at an ecological extreme. We attempted to verify these hypotheses using microsatellites and a reference of common oak species. The results showed that the study population is genetically distinct from both Q. petraea and Q. robur. Additionally, the population is characterised by a low effective population size and limited gene dispersal. This suggests that the study population reveals strong reproductive isolation from common species, implying alternative sources of atypical morphology.  相似文献   

15.
Capsule Abundance monitoring data suggest that the short-term response of breeding birds to recent warming in Great Britain has been range expansion, caused by poleward shifts of leading range margins and no significant shifts of trailing range margins.

Aims To quantify latitudinal and elevational shifts of breeding bird populations in Great Britain and test for differential shifts in range margins during a period of warming (1994–2009).

Methods We modelled the population density of 80 species as a smooth function of latitude, longitude, elevation and year. Reference points on the distribution curve were used to describe latitudinal and elevational shifts.

Results Across species, poleward shifts in the leading range margin were greater than in the range-centre. The trailing range margin was largely static, providing evidence for significant range expansion. The magnitude of latitudinal range shift lagged behind the equivalent shift in temperature, suggesting that species may be accumulating a climatic debt. There was no evidence for consistent elevational shifts.

Conclusion Contrary to the generally expected long-term consequences of climate change of range contraction, we show that the short-term response to recent warming has been range expansion. This suggests the mechanisms of short-term and long-term consequences of climate change may differ.  相似文献   

16.
Wild cherry (Prunus avium L.) is a widespread, partially asexual, noble hardwood European species characterized by a scattered distribution, small population sizes, and human exploitation for its valuable wood. These characteristics, especially at the southern limits of the species natural distribution where additional varying stresses may occur, render P. avium populations prone to potential stochastic, genetic, and demographic events. In this study, we used dominant inter simple sequence repeat (ISSR) and codominant simple sequence repeat (SSR) markers to infer the genetic structure of P. avium. Five populations from northern Greece were evaluated based on 46 ISSR and 11 SSR loci. Populations presented a relatively high level of genetic variation, with a mean genetic diversity of H e?=?0.166 and H e?=?0.740 regarding ISSR and SSR analysis, respectively. We observed moderate population differentiation for ISSR (G ST?=?0.113) and SSR (F ST?=?0.097) markers. AMOVA also detected significant differentiation among populations for ISSRs (?? ST?=?0.338) and SRRs (?? ST?=?0.162). According to linkage disequilibrium analysis, estimates of effective population size were generally sufficient for maintaining extant genetic variability and evolutionary potential. A possible bottleneck was detected for only one population. In general, it appears that despite the particular characteristics of the P. avium populations studied, genetic stochasticity events were not apparent. The studied populations, located at the rear edge of the species European distribution, reveal a wealth of genetic variation that is very valuable for the genetic conservation of local adaptive gene complexes, especially under contemporary climatic change scenarios.  相似文献   

17.
对秦岭山区的7个秀雅杜鹃野生群体的表型变异情况进行分析。结果表明:秀雅杜鹃表型性状在种群间和种群内都存在一定程度的变异,但变异不大。各性状总的平均变异系数在0(雄蕊数目)~0.28(花梗长)之间,种群间总的平均变异系数在0.08(周至)~0.14(南郑),花色性状种群间变异大,种群内变异较小。秀雅杜鹃表型性状与地理生态因子的相关分析表明,各个性状的变异和地理生态因子并无显著的相关性,说明表型受环境影响的程度相对较小。利用群体间欧氏距离进行的UPGMA聚类分析结果表明,秀雅杜鹃野生群体可以划分为3类。  相似文献   

18.
Pollen sculpture elements of four Rhododendron species from 49 populations were studied using scanning electron microscopy. The sculpture in the polar areas of the studied taxa pollen differed in type, shape, size, and distribution of individual elements. There were five sculpture types identified. The pollen of Rhododendron ledebourii from various populations in Altai revealed sculpture elements characteristic of R. dauricum, R. mucronulatum, and R. sichotense, questioning the taxonomic position of the former species. Analysis of the geographical distribution of sculpture types clarified species boundaries and zones of sympatric distribution. The northern boundary of R. mucronulatum was expanded and new populations of R. sichotense were revealed. In the sympatric zones of R. mucronulatum and R. sichotense, there were intermediate populations showing pollen sculptures typical of R. dauricum, R. mucronulatum, and R. sichotense. The sculpture diversity observed in the pollen of R. dauricum, together with its presence in sympatric zones, suggests that it is probably a hybrid of R. sichotense and R. mucronulatum or a subspecies of R. sichotense.  相似文献   

19.
A contemporary outcome of dynamic host–parasite coevolution can be driven by the adaptation of a parasite to exploit its hosts at the population and species levels (parasite specialisation) or by local host adaptations leading to greater host resistance to sympatric parasite populations (host resistance). We tested the predominance of these two scenarios using cross-infection experiments with two geographically distant populations of the rose bitterling, Rhodeus ocellatus, a fish brood parasite of freshwater mussels, and four populations of their mussel hosts (two Anodonta woodiana and two Unio douglasiae populations) with varying degrees of geographic sympatry and local coexistence. Our data support predictions for host resistance at the species level but no effect of local coexistence between specific populations. Rhodeus ocellatus showed a preference for allopatric host populations, irrespective of host species. Host mussel response, in terms of ejection of R. ocellatus eggs, was stronger in the more widespread and abundant host species (A. woodiana) and this response tended to be higher in sympatric populations. These outcomes provide support for the importance of host resistance in bitterling oviposition-site decisions, demonstrating that host choice by R. ocellatus is adaptive by minimizing egg ejections. These findings imply that R. ocellatus, and potentially other bitterling species, may benefit from exploiting novel hosts, which may not possess appropriate adaptive responses to parasitism.  相似文献   

20.
Anthropogenic climate change is driving the redistribution of species at a global scale. For marine species, populations at trailing edges often live very close to their upper thermal limits and, as such, poleward range contractions are one of the most pervasive effects of ongoing and predicted warming. However, the mechanics of processes driving such contractions are poorly understood. Here, we examined the response of the habitat forming kelp, Laminaria digitata, to realistic terrestrial heatwave simulations akin to those experienced by intertidal populations persisting at the trailing range edge in the northeast Atlantic (SW England). We conducted experiments in both spring and autumn to determine temporal variability in the effects of heatwaves. In spring, heatwave scenarios caused minimal stress to L. digitata but in autumn all scenarios tested resulted in tissue being nonviable by the end of each assay. The effects of heatwave scenarios were only apparent after consecutive exposures, indicating erosion of resilience over time. Monthly field surveys corroborated experimental evidence as the prevalence of bleaching (an indication of physiological stress and tissue damage) in natural populations was greatest in autumn and early winter. Overall, our data showed that L. digitata populations in SW England persist close to their upper physiological limits for emersion stress in autumn. As the intensity of extreme warming events is likely to increase with anthropogenic climate change, thermal conditions experienced during periods of emersion will soon exceed physiological thresholds and will likely induce widespread mortality and consequent changes at the population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号