共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the role of protein turnover in the accumulation of the storage protein β-conglycinin (7S protein) during soybean embryogenesis. The results of pulse:chase experiments using 3H-leucine indicate that the turnover of the subunits of β-conglycinin by proteolysis is more rapid in early stages of cotyledon maturation than in later stages. 相似文献
2.
Efficient Down-Regulation of the Major Vegetative Storage Protein Genes in Transgenic Soybean Does Not Compromise Plant Productivity
下载免费PDF全文

Paul E. Staswick Zhanyuan Zhang Thomas E. Clemente James E. Specht 《Plant physiology》2001,127(4):1819-1826
Soybean (Glycine max L. Merr.) contains two related and abundant proteins, VSP alpha and VSP beta, that have been called vegetative storage proteins (VSP) based on their pattern of accumulation, degradation, tissue localization, and other characteristics. To determine whether these proteins play a critical role in sequestering N and other nutrients during early plant development, a VspA antisense gene construct was used to create transgenic plants in which VSP expression was suppressed in leaves, flowers, and seed pods. Total VSP was reduced at least 50-fold due to a 100-fold reduction in VSP alpha and a 10-fold reduction in VSP beta. Transgenic lines were grown in replicated yield trials in the field in Nebraska during the summer of 1999 and seed harvested from the lines was analyzed for yield, protein, oil, and amino acid composition. No significant difference (alpha = 0.05) was found between down-regulated lines and controls for any of the traits tested. Young leaves of antisense plants grown in the greenhouse contained around 3% less soluble leaf protein than controls at the time of flowering. However, total leaf N did not vary. Withdrawing N from plants during seed fill did not alter final seed protein content of antisense lines compared with controls. These results indicate that the VSPs play little if any direct role in overall plant productivity under typical growth conditions. The lack of VSPs in antisense plants might be partially compensated for by increases in other proteins and/or non-protein N. The results also suggest that the VSPs could be genetically engineered or replaced without deleterious effects. 相似文献
3.
Developmental Regulation of beta-Conglycinin in Soybean Axes and Cotyledons 总被引:1,自引:0,他引:1
下载免费PDF全文

Analysis of the expression of genes encoding the β-conglycinin seed storage proteins in soybean has been used to extend our understanding of developmental gene expression in plants. The α, α′, and β subunits of β-conglycinin are encoded by a multigene family which is organ-specific in its expression. In this study we report the differentially programmed accumulation of the α, α′, and β subunits of β-conglycinin. Multiple isomeric forms of each subunit are present in the dry seed, but the timing of their accumulation is unique for each subunit. The previously reported variation in amount of α′ and α subunits in axis and cotyledons is also reflected in the amount of subunit specific mRNA which is present in each tissue. The β subunit, previously undetected in soybean axes, is found to be synthesized but rapidly degraded. These differences in β-conglycinin protein accumulation may be reflected by the morphological differences observed in protein bodies between these two tissues. 相似文献
4.
Cotyledons from Phaseolus vulgaris L. (var. Improved Tendergreen) were tested for their activity on α-N-benzoyl-dl-arginine-p-nitroanilide (BAPNA) and azocasein during a germination periood of 10 days. Both activities increased throughout germination when activity was expressed on the basis of dry weight or protein. That these two activities were most likely due to the action of different enzymes was indicated by the fact that (a) optimal pH for the hydrolysis of BAPNA and azocasein was 8.2 and 5.5, respectively, and (b) the digestion of azocasein was considerably enhanced by mercaptoethanol and partially inhibited by thiol protease inhibitors, N-ethylmaleimide, and E-64, whereas these same regents caused little change in activity toward BAPNA. The three subunits of the major storage protein, G1, disappeared during germination and were accompanied by the accumulation of lower molecular weight products. The breakdown of G1 by extracts of the germinated beans could be demonstrated in vitro at pH 5 to 6. This activity was enhanced by mercaptoethanol and completely abolished by N-ethylmalemide, leupeptin, and E-64. It is concluded that a thiol protease with an acid pH optimum is primarily responsible for the disappearance of the major storage protein during germination. Although an inhibitor of the plant thiol protease, papain, is present in the mature bean and decreases during germination, its role in the control of the breakdown of the storage protein remains to be elucidated. 相似文献
5.
Chang-Jen Huang †Chien-Chang Chen Hsiu-Jane Chen †Fore-Lien Huang ‡ Geen-Dong Chang 《Journal of neurochemistry》1995,64(4):1715-1720
Abstract: Two isoforms of a protease inhibitor of the serpin family (p62) have been purified from bighead carp perimeningeal fluid. Both isoforms migrate with an apparent molecular mass of 62 kDa on reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gels. Both proteins inhibited the activities of bovine trypsin, bovine chymotrypsin, and porcine pancreatic elastase. They also formed complexes with these proteases that were resistant to sodium dodecyl sulfate treatment. p62 exists in the extracts of all tissues examined, including brain, head kidney, kidney, liver, muscle, ovary, pituitary, and spleen. It is also present in serum, ovarian fluid, and milt as well as perimeningeal fluid. The protease inhibitor is a glycoprotein, and its carbohydrate moiety could be removed by endoglycosidase F. Because p62 resembles mammalian α1 -antitrypsin in many aspects, it is likely a fish equivalent of α1 -antitrypsin. 相似文献
6.
7.
Regulation by ABA of beta-Conglycinin Expression in Cultured Developing Soybean Cotyledons 总被引:1,自引:0,他引:1
下载免费PDF全文

The regulation of cotyledon-specific gene expression by exogenously applied abscisic acid (ABA) was studied in developing cultured cotyledons of soybean (Glycine max L. Merr. cv Provar). When immature cotyledons were cultured in modified Thompson's medium, the addition of ABA resulted in an increased concentration of the β-subunit of β-conglycinin, one of the major storage proteins of soybean seeds. The amount of the α′-and α-subunits of β-conglycinin was relatively unaffected by the ABA treatment. When fluridone, an inhibitor of carotenoid biosynthesis that has been shown to decrease ABA levels in plant tissues, was added to the medium the level of ABA and the β-subunit decreased in the cotyledons. Increasing the concentration of sucrose in the culture medium caused an increase in the concentration of ABA and β-subunit in the cotyledons. When in vitro translation products from RNA isolated from cotyledons cultured with ABA were immunoprecipitated with antiserum against β-conglycinin, there was an increased amount of pre-β-subunit polypetide compared to the translation products from RNA isolated from control cotyledons. The pre-β-subunit polypeptide was not detected in translation products from RNA isolated from fluridone-treated cotyledons. Nucleic acid hybridization reactions showed that the level of β-subunit mRNA was higher in ABA-treated cotyledons compared to the control, and was lower in the fluridone-treated cotyledons. We have shown that exogenous ABA is able to modulate the accumulation of the β-subunit of β-conglycinin in developing cultured soybean cotyledons. 相似文献
8.
9.
Biochemical Characterization of a Protease Involved in the Processing of a Streptomyces reticuli Cellulase (Avicelase)
下载免费PDF全文

A 36-kDa protease from Streptomyces reticuli had recently been shown to be responsible for the in vivo and in vitro processing of the 82-kDa cellulase (Avicelase) Cel-1 from S. reticuli to a 42-kDa truncated enzyme. It was induced only in the presence of Avicel, hydroxyethylcellulose, and xylan. The addition of the nonionic detergent Tween 80 to the culture medium containing Avicel as the carbon source led to a 10-fold increase in extracellular proteolytic activity. The protease, which has an isoelectric point of 3.9, was purified to homogeneity from the culture filtrate by a combination of anion-exchange and hydrophobic-interaction chromatographies and was characterized biochemically. The enzyme hydrolyzed gelatin and the chromogenic substrates Azocoll, Azocasein, and Azoalbumin. Its highest activity was determined between pH 7.0 and 7.7 and at 55°C. The proteolytic activity was inhibited by 1,10-phenanthroline and EDTA; however, no metal ions were detected to be associated with the protein. The protease was stable in the presence of 1 M urea and 0.01 M sodium dodecyl sulfate. The inhibitory effect of alpha-2-macroglobulin indicated an endo-mode of proteolytic cleavage. Studies with lectins and sugar analysis by mass spectroscopy indicated that the cellulase (Avicelase) Cel-1 was neither N nor O glycosylated. Its processing by the protease occurred at temperatures ranging from 30 to 55°C, pH 7.5, in the presence of 2 mM dithiothreitol. 相似文献
10.
11.
Subcellular Localization Studies Indicate That Lipoxygenases 1 to
6 Are Not Involved in Lipid Mobilization during
Soybean
Germination 总被引:4,自引:1,他引:4
下载免费PDF全文

Soybean (Glycine max) lipoxygenase (LOX) has been proposed to be involved in reserve lipid mobilization during germination. Here, subcellular fractionation studies show that LOX1, -2, -3, -4, -5, and -6 isozymes were associated with the soluble fraction but not with purified oil bodies. The purified oil bodies contained small amounts of LOX1 (<0.01% total activity), which apparently is an artifact of the purification process. Immunogold labeling indicated that, in cotyledon parenchyma cells of LOX wild-type seeds that had soaked and germinated for 4 d, the majority of LOX protein was present in the cytoplasm. In 4-d-germinated cotyledons of a LOX1/2/3 triple null mutant (L0), a small amount of label was found in the cytoplasm. In epidermal cells, LOX appeared in vacuoles of both wild-type and L0 germinated seeds. No LOXs cross-reacting with seed LOX antibodies were found to be associated with the cell wall, plasma membrane, oil bodies, or mitochondria. Lipid analysis showed that degradation rates of total lipids and triacylglycerols between the wild type and L0 were not significantly different. These results suggest that LOX1, -2, -3, -4, -5, and -6 are not directly involved in reserve lipid mobilization during soybean germination. 相似文献
12.
Differential Proteolysis of Glycinin and beta-Conglycinin Polypeptides during Soybean Germination and Seedling Growth 总被引:1,自引:0,他引:1
下载免费PDF全文

The degradation of the major seed storage globulins of the soybean (Glycine max [L.] Merrill) was examined during the first 12 days of germination and seedling growth. The appearance of glycinin and β-conglycinin degradation products was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cotyledon extracts followed by electroblotting to nitrocellulose and immunostaining using glycinin and β-conglycinin specific antibodies. The three subunits of β-conglycinin were preferentially metabolized. Of the three subunits of β-conglycinin, the larger α and α′ subunits are rapidly degraded, generating new β-conglycinin cross-reactive polypeptides of 51,200 molecular weight soon after imbibition of the seed. After 6 days of growth the β-subunit is also hydrolyzed. At least six polypeptides, ranging from 33,100 to 24,000 molecular weight, appear as apparent degradation products of β-conglycinin. The metabolism of the glycinin acidic chains begins early in growth. The glycinin acidic chains present at day 3 have already been altered from the native form in the ungerminated seed, as evidenced by their higher mobility in an alkaline-urea polyacrylamide gel electrophoresis system. However, no change in the molecular weight of these chains is detectable by sodium dodecyl sulfate-polyarylamide gel electrophoresis. Examination of the glycinin polypeptide amino-termini by dansylation suggests that this initial modification of the acidic chains involves limited proteolysis at the carboxyl-termini, deamidation, or both. After 3 days of growth the acidic chains are rapidly hydrolyzed to a smaller (21,900 molecular weight) form. The basic polypeptides of glycinin appear to be unaltered during the first 8 days of growth, but are rapidly degraded thereafter to unidentified products. All of the original glycinin basic chains have been destroyed by day 10 of growth. 相似文献
13.
14.
Silvia Ramundo David Casero Timo Mühlhaus Dorothea Hemme Frederik Sommer Michèle Crèvecoeur Michèle Rahire Michael Schroda Jannette Rusch Ursula Goodenough Matteo Pellegrini Maria Esther Perez-Perez José Luis Crespo Olivier Schaad Natacha Civic Jean David Rochaix 《The Plant cell》2014,26(5):2201-2222
15.
Hiroshi Takeuchi Takako Takeuchi Jing Gao Lewis C. Cantley Masato Hirata 《Molecular and cellular biology》2010,30(7):1689-1702
The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor.Both constitutive endocytosis and activated endocytosis are highly regulated events by which cells take up nutrients and internalize receptors for recycling or degradation (47). Endocytosed molecules are delivered to early endosomes, where the components are sorted to the cell surface for recycling back to the plasma membrane, or to late endosomes to be degraded in lysosomes (17). The molecular mechanisms regulating these events are not fully understood.One of the major protein families involved in the trafficking of membrane compartments is sorting nexins (SNXs), which are characterized by the presence of phox homology (PX) domains (8, 65). The PX domain is a protein module which consists of approximately 130 amino acids with three β-strands followed by three α-helices forming a helical subdomain, and the general function of this module is to interact with the head groups of inositol phospholipids through which parental proteins are targeted to specific cellular compartments. Most of the SNXs examined to date specifically recognize phosphatidylinositol 3-phosphate [PtdIns(3)P], which is found predominately in early endosomes (11). The founding member of the SNX family, SNX1, was initially identified as an interaction partner of epidermal growth factor receptor (EGFR), and the expression of SNX1 enhanced lysosomal degradation of EGFR (38); therefore, SNXs are most likely to be involved in the trafficking of many different families of receptors which are recycled to the cell surface or sent to the lysosome for degradation (19). On the other hand, PX domain-containing proteins have also been reported to bind to phosphoinositides other than PtdIns(3)P and to have functions independent of receptor trafficking (54). For example, phospholipase D is a PX domain-containing protein that hydrolyzes phosphatidylcholine to produce a second-messenger molecule, phosphatidic acid. Interestingly, phospholipase D has been recently shown to accelerate EGFR endocytosis by activating dynamin GTPase through its PX domain but independently of lipase activity (39). Cytokine-independent survival kinase (CISK) is a PX domain-containing protein kinase that has also been shown to regulate sorting of a chemokine receptor CXCR4 through AIP4, the CXCR4 ubiquitin ligase (60). RGS-PX1, a GTPase-activating protein for Gαs of heterotrimeric GTP-binding proteins, and KIF16B, a PX domain-containing kinesin superfamily member, have been shown to regulate EGFR trafficking (27, 72) and are now grouped into the SNX family as SNX13 and SNX26, respectively.Another feature of the PX domain is a well-conserved polyproline sequence (PXXP) in the variable loop between α1 and α2 helices, which led to the original identification of the PX domain as a SH3 domain-binding partner (53). The physiological importance of both intermolecular and intramolecular interactions mediated by polyproline sequences has been shown in various molecules, including phospholipase D2 (33) and p47phox (1). In mammals, there are currently 47 proteins harboring PX domains, and 30 proteins are termed SNXs (59). The functions of these proteins have just begun to be revealed.Actin cytoskeletal dynamics have been implicated not only in cell motility and cytokinesis but also in endocytic processes, although the necessity and role in endocytosis in higher eukaryotic cells remain ambiguous (12, 34, 35, 55). The WASP homology 2 (WH2) domain is known as an actin-binding motif found in regulators of the actin cytoskeleton, including Wiskott-Aldrich syndrome protein (WASP), Scar/WASP-family verprolin-homologous protein (WAVE), verprolin/WASP-interacting protein (WIP), missing in metastasis (MIM), and β-thymosins (52). Some proteins with WH2 domains, such as β-thymosin, prevent actin filament assembly by sequestering actin monomers, while others, such as N-WASP and the Drosophila protein Ciboulot participate in barbed-end actin assembly (52). Recently, the structural basis for these opposite functions of WH2 domains was demonstrated; the interaction of the C-terminal region of β-thymosin/WH2 domain with the pointed end of the actin monomer accounts for the switch in function from inhibition to promotion of actin assembly (26). WH2 domains exist in almost 20 proteins, whose functions remain to be clarified.In the present study, we isolated a new multimodular protein (termed PXK), conserved in multicellular organisms including humans through flies, which possesses a PX domain, a protein kinase-like domain, and a WH2 domain. We show that the PX and WH2 domains function as PtdIns(3)P and actin-binding domains, respectively. PXK expression in COS cells accelerated ligand-induced EGFR endocytosis and degradation that was dependent on a functional PX domain but independent of the WH2 domain. PXK also enhanced ubiquitination of EGFR induced by EGF stimulation in these cells. Based on these results, we propose that PXK is a functional sorting nexin that may play an additional role in cellular function via its interaction with the actin cytoskeleton. 相似文献
16.
As seeds of the French bean (Phaseolus vulgaris, L. cv. Tendergreen) mature, a single protein, G1 globulin (analogous to legumin), represents the majority of protein synthesized. Washed polysomes extracted from developing cotyledons had little endogenous activity in amino acid incorporation, but on addition of cell-free extracts from wheat germ, active incorporation was obtained, the level being similar to that with viral RNA as messenger. The Mg(2+) optimum for protein synthesis in the presence of bean polysomes was 6 mm compared with 4 mm for synthesis of viral polypeptides in the wheat germ system. Using T-2 toxin as an inhibitor, it was shown that 29% of the incorporation depended on initiation events. Electrophoretic analysis of the total polypeptide products of cell-free synthesis gave a disperse profile. Centrifugation to remove polysome-bound peptides after 60 minutes incubation gave a supernatant having a product with the same electrophoretic mobility as G1 globulin and containing 26% of the radioactivity present in the gel. Protein eluted from this peak was subjected to re-electrophoresis and shown to consist of the three polypeptide subunits characteristic of G1 globulin. 相似文献
17.
Partial Characterization of the Protease(s) Involved in the Degradation of Phytochrome Polypeptide in Etiolated Epicotyl Tissue of Pisum sativum 总被引:1,自引:0,他引:1
Nakazawa Miki; Satoh Shinobu; Furuya Masaki; Fujii Tadashi 《Plant & cell physiology》1990,31(8):1243-1247
Effects of chelators and inhibitors of proteases and ATP-generatingsystems on the red-light-induced degradation of phytochromewere examined in apical segments of epicotyl from 7-day-old,etiolated pea seedlings. The results suggest that a serine protease(s)is involved in degradation of phytochrome, and that the protease(s)and/or the degradation process requires Fe2+ and/or Zn2+ andATP. (Received February 5, 1990; Accepted September 3, 1990) 相似文献
18.
Matthias P. Müller Alexander V. Shkumatov Lena K. Oesterlin Stefan Schoebel Philip R. Goody Roger S. Goody Aymelt Itzen 《The Journal of biological chemistry》2012,287(42):35036-35046
After the pathogenic bacterium Legionella pneumophila is phagocytosed, it injects more than 250 different proteins into the cytoplasm of host cells to evade lysosomal digestion and to replicate inside the host cell. Among these secreted proteins is the protein DrrA/SidM, which has been shown to modify Rab1b, a main regulator of vesicular trafficking in eukaryotic cells, by transfer of adenosine monophosphate (AMP) to Tyr77. In addition, Legionella provides the protein SidD that hydrolytically reverses the covalent modification, suggesting a tight spatial and temporal control of Rab1 function by Legionella during infection. Small angle x-ray scattering experiments of DrrA allowed us to validate a tentative complex model built by combining available crystallographic data. We have established the effects of adenylylation on Rab1 interactions and properties in a quantitative way. In addition, we have characterized the kinetics of DrrA-catalyzed adenylylation as well as SidD-catalyzed deadenylylation toward Rab1 and have determined the nucleotide specificities of both enzymes. This study enhances our knowledge of proteins subverting Rab1 function at the Legionella-containing vacuole. 相似文献
19.
Characterization of Multiple Regions Involved in Replication and Mobilization of Plasmid pNZ4000 Coding for Exopolysaccharide Production in Lactococcus lactis 总被引:4,自引:0,他引:4
下载免费PDF全文

We characterized the regions involved in replication and mobilization of the 40-kb plasmid pNZ4000, encoding exopolysaccharide (EPS) production in Lactococcus lactis NIZO B40. The plasmid contains four highly conserved replication regions with homologous rep genes (repB1, repB2, repB3, and repB4) that belong to the lactococcal theta replicon family. Subcloning of each replicon individually showed that all are functional and compatible in L. lactis. Plasmid pNZ4000 and genetically labeled derivatives could be transferred to different L. lactis strains by conjugation, and pNZ4000 was shown to be a mobilization plasmid. Two regions involved in mobilization were identified near two of the replicons; both included an oriT sequence rich in inverted repeats. Conjugative mobilization of the nonmobilizable plasmid pNZ124 was promoted by either one of these oriT sequences, demonstrating their functionality. One oriT sequence was followed by a mobA gene, coding for a trans-acting protein, which increased the frequency of conjugative transfer 100-fold. The predicted MobA protein and the oriT sequences show protein and nucleotide similarity, respectively, with the relaxase and with the inverted repeat and nic site of the oriT from the Escherichia coli plasmid R64. The presence on pNZ4000 of four functional replicons, two oriT sequences, and several insertion sequence-like elements strongly suggests that this EPS plasmid is a naturally occurring cointegrate. 相似文献
20.
Preferential Loss of an Abundant Storage Protein from Soybean Pods during Seed Development 总被引:6,自引:6,他引:6
下载免费PDF全文

Staswick PE 《Plant physiology》1989,90(4):1252-1255
A temporary vegetative storage protein, composed of similar 25 kilodalton and 27 kilodalton subunits, was found to be abundant in soybean (Glycine max (L.) Herr. var Hobbit) leaves, stems, pods, flower petals, germinated cotyledons, and less abundant in roots, nodules and seeds. Total pod protein was highest at 3 weeks after flowering and declined by 37% within 3 weeks during seed development. During this time the vegetative storage protein declined from 18% to 1.5% of the total pod protein and accounted for 45% of the protein lost from pods. This indicates that the vegetative storage protein makes a significant contribution to the pool of nutrients mobilized from pods for transport to developing seeds. 相似文献