首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Plant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant Arabidopsis thaliana. We have analysed plant cell wall pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis. By highly specific enzymatic digestion of a polysaccharide in a cell wall preparation, a unique fingerprint of short oligosaccharides was produced. These oligosaccharides gave quantitative and structural information on the original polysaccharide chain. We analysed enzyme-accessible polygalacturonan (PGA), linear β(1,4) galactan and linear α(1,5) arabinan in several organs of Arabidopsis: roots, young leaves, old leaves, lower and upper inflorescence stems, seeds and callus. We found that this PGA constitutes a high proportion of cell wall material (CWM), up to 15% depending on the organ. In all organs, between 60 and 80% of the PGA was highly esterified in a blockwise fashion, and surprisingly, dispersely esterified PGA was hardly detected. We found enzyme-accessible linear galactan and arabinan are both present as a minor polysaccharide in all the organs. The amount of galactan ranged from ~0.04 to 0.25% of CWM, and linear arabinan constituted between 0.015 and 0.1%. Higher levels of galactan correlated with expanding tissues, supporting the hypothesis that this polysaccharide is involved in wall extension. We show by analysis of mur4 that the methods and results presented here also provide a basis for studies of pectic polysaccharides in Arabidopsis mutants.  相似文献   

2.
Pectic substances are a major component of cell walls in vegetable plants and have an important influence on plant food texture. Cauliflower (Brassica oleracea L. var. botrytis) stem sections at different regions of the mature plant stem have been monitored for tissue-related changes in the native pectic polysaccharides. Chemical analysis detected appreciable differences in the degree of methyl-esterification (ME) of pectic polysaccharides. About 65% of galacturonic acid (GalpA) residues were methyl-esterified in floret tissues. Relative ME showed a basipetal decrease, from 94% in the upper stem to 51% in the lower-stem vascular tissues. The decrease was not related to a basipetal increase in glucuronic acid (GlcpA) residues. The monoclonal antibodies, JIM 5 and JIM 7, produced distinct labelling patterns for the relatively low-methyl-esterified and high-methyl-esterified pectin epitopes, respectively. Labelling was related to cell type and tissue location in the stem. Floret cell walls contained epitopes for both JIM 5 and JIM 7 throughout the wall. Stem vascular tissues labelled more strongly with JIM 5. Whereas pith parenchyma in the upper stem labelled more strongly with JIM 7, in the lower-stem pith parenchyma, JIM 5 labelling predominated. Localization of pectic polysaccharide epitopes in cell walls provides an insight into how structural modifications might relate to the textural and nutritional properties of cell walls. Received: 16 August 1997 / Accepted: 20 December 1997  相似文献   

3.
Cell walls of the generic phase of the freshwater red alga Lemanea annulata Kütz were mechanically isolated and chemically characterized. Walls consisted mainly of polysaccharide with lesser quantities of associated protein and lipid. The major wall component was alkali-soluble xylan, comprised mainly of 4-linked β-xylopyranosyl residues and small amounts of 3-O-substituted β-xylopyranosyl residues. Hot water extracts yielded non-sulfated polymers, with 3- or 3,4-linked β-galactosyl residues alternating with 4-linked α-glucuronosyl residues as the predominant structural features. This acid polysaccharide shares many characteristics of the mucilage previously described from the freshwater genus Batrachospermum. Isolated cell walls of L. annulata contained approximately 6% cellulose. Cellobiohydrolase/colloidal gold labelling of cell walls revealed β-4-glycan throughout the fibrillar portion of the wall. Wall protein consisted of at least 17 amino acids, of which threonine and alanine were the most abundant. Polysaccharides of the cell walls of L. annulata differ from those of marine red algae and are similar to those described for other Batrachospermales.  相似文献   

4.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

5.
The direct contact of cells to the environment is mediated in many organisms by an extracellular matrix. One common aspect of extracellular matrices is that they contain complex sugar moieties in form of glycoproteins, proteoglycans, and/or polysaccharides. Examples include the extracellular matrix of humans and animal cells consisting mainly of fibrillar proteins and proteoglycans or the polysaccharide based cell walls of plants and fungi, and the proteoglycan/glycolipid based cell walls of bacteria. All these glycostructures play vital roles in cell-to-cell and cell-to-environment communication and signalling.An extraordinary complex example of an extracellular matrix is present in the walls of higher plant cells. Their wall is made almost entirely of sugars, up to 75% dry weight, and consists of the most abundant biopolymers present on this planet. Therefore, research is conducted how to utilize these materials best as a carbon-neutral renewable resource to replace petrochemicals derived from fossil fuel. The main challenge for fuel conversion remains the recalcitrance of walls to enzymatic or chemical degradation due to the unique glycostructures present in this unique biocomposite.Here, we present a method for the rapid and sensitive analysis of plant cell wall glycostructures. This method OLIgo Mass Profiling (OLIMP) is based the enzymatic release of oligosaccharides from wall materials facilitating specific glycosylhydrolases and subsequent analysis of the solubilized oligosaccharide mixtures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS)1 (Figure 1). OLIMP requires walls of only 5000 cells for a complete analysis, can be performed on the tissue itself2, and is amenable to high-throughput analyses3. While the absolute amount of the solubilized oligosaccharides cannot be determined by OLIMP the relative abundance of the various oligosaccharide ions can be delineated from the mass spectra giving insights about the substitution-pattern of the native polysaccharide present in the wall.OLIMP can be used to analyze a wide variety of wall polymers, limited only by the availability of specific enzymes4. For example, for the analysis of polymers present in the plant cell wall enzymes are available to analyse the hemicelluloses xyloglucan using a xyloglucanase5, 11, 12, 13, xylan using an endo-β-(1-4)-xylanase 6,7, or for pectic polysaccharides using a combination of a polygalacturonase and a methylesterase 8. Furthermore, using the same principles of OLIMP glycosylhydrolase and even glycosyltransferase activities can be monitored and determined 9.  相似文献   

6.
Pectic substances extracted from cabbage cell walls with water, at 80°, and (NH4)2C2O4, at 80°, accounted for 45%(w/w) of the purified cell wall material. Only a small amount of neutral arabinan was isolated. Partial acid hydrolysis and methylation analysis revealed that the major pectic polysaccharide had a rhamnogalacturonan backbone to which a highly branched arabinan was linked, at C-4 of the rhamnose units, mainly through short chains of (1→4)-linked galactopyranose residues. The bulk of the soluble pectic substances had only small amounts of proteins associated with them. After further extraction of the depectinated material with 1M and 4M KOH, to remove the hemicelluloses, the cellulose residue was found to contain a pectic polysaccharide which was solubilized by treatment with cellulase. The general structural features of the pectic polymers are discussed in the light of these results.  相似文献   

7.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   

8.
Two different types of contacts (or interfaces) exist between the plant host and the fungus during the vesicular-arbuscular mycorrhizal symbiosis, depending on whether the fungus is intercellular or intracellular. In the first case, the walls of the partners are in contact, while in the second case the fungal wall is separated from the host cytoplasm by the invaginated host plasmamembrane and by an interfacial material. In order to verify the origin of the interfacial material, affinity techniques which allow identification in situ of cell-wall components, were used. Cellobiohydrolase (CBH I) that binds to cellulose and a monoclonal antibody (JIM 5) that reacts with pectic components were tested on roots ofAllium porrum L. (leek) colonized byGlomus versiforme (Karst.) Berch. Both probes gave a labelling specific for the host cell wall, but each probe labelled over specific and distinct areas. The CBH I-colloidal gold complex heavily labelled the thick epidermal cell walls, whereas JIM 5 only labelled this area weakly. Labelling of the hypodermis was mostly on intercellular material after treatment with JIM 5 and only on the wall when CBH I was used. Suberin bands found on the radial walls were never labelled. Cortical cells were mostly labelled on the middle lamella with JIM 5 and on the wall with CBH I. Gold granules from the two probes were found in interfacial material both near the point where the fungus enters the cell and around the thin hyphae penetrating deep into the cell. The ultrastructural observations demonstrate that cellulose and pectic components have different but complementary distributions in the walls of root cells involved in the mycorrhizal symbiosis. These components show a similar distribution in the interfacial material laid down around the vesicular-arbuscular mycorrhizal fungus indicating that the interfacial material is of host origin.  相似文献   

9.
This study focuses on the analysis of polysaccharide residues from the cell walls of fruits and vegetables: tomato, potato, pumpkin, carrot and celery root. An alcohol-insoluble residue was prepared from plant material by extraction using the hot ethyl alcohol method and then cell wall fractions soluble in trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate, sodium carbonate and alkaline solution were sequentially extracted. Infrared spectroscopy combined with Fourier transform (FT-IR) was used to evaluate differences among cell wall residues and among species after each step of sequential extraction of pectins and hemicelluloses. Additionally, pectic substances were identified using an Automated Wet Chemistry Analyser. Principal component analysis (PCA) was applied to FT-IR spectra in two regions: 1,800–1,200 cm?1 and 1,200–800 cm?1 in order to distinguish different components of cell wall polysaccharides. This method also allowed us the possibility of highlighting the most important wavenumbers for each type of polysaccharide: 1,740, 1,610 and 1,240 cm?1 denoting pectins or 1,370 and 1,317 cm?1 denoting hemicelluloses and cellulose, respectively.  相似文献   

10.
The two-layered, fibrillar cell wall of Mougeotia C. Agardh sp. consisted of 63.6% non-cellulosic carbohydrates and 13.4% cellulose. The orientation of cellulose microfibrils in the native cell wall agrees with the multinet growth hypothesis, which has been employed to explain the shift in microfibril orientation from transverse (inner wall) toward axial (outer wall). Monosaccharide analysis of isolated cell walls revealed the presence of ten sugars with glucose, xylose and galactose most abundant. Methylation analysis of the acid-modified, 1 N NaOH insoluble residue fraction showed that it was composed almost exclusively of 4-linked glucose, confirming the presence of cellulose. The major hemicellulosic carbohydrate was semi-purified by DEAE Sephacel (Cl?) anion-exchange chromatography of the hot 1 N NaOH soluble fraction. This hemicellulose was a xylan consisting of a 4-xylosyl backbone and 2,4-xylosyl branch points. The major hot water soluble neutral polysaccharide was identified as a 3-linked galactan. Mougeotia cell wall composition is similar to that of (Charophyceae) and has homologies with vascular plant cell walls. Our observations support transtructural evidence which suggests that members of the Charophyceae represent the phylogenetic line that gave rise to vascular plants. Therefore, the primary cell walls of vascular plants many have evolved directly from structures typical of the filamentous green algal cell walls found in the Charophyceae.  相似文献   

11.
Plant cell walls serve several functions: they impart rigidity to the plant, provide a physical and chemical barrier between the cell and its environment, and regulate the size and shape of each cell. Chemical studies have provided information on the biochemical composition of the plant cell walls as well as detailed knowledge of individual cell wall molecules. In contrast, very little is known about the distribution of specific cell wall components around individual cells and throughout tissues. To address this problem, we have produced polyclonal antibodies against two cell wall matrix components; rhamnogalacturonan I (RG-I), a pectic polysaccharide, and xyloglucan (XG), a hemicellulose. By using the antibiodies as specific markers we have been able to localize these polymers on thin sections of suspension-cultured sycamore cells (Acer pseudoplatanus). Our results reveal that each molecule has a unique distribution. XG is localized throughout the entire wall and middle lamella. RG-I is restricted to the middle lamella and is especially evident in the junctions between cells. These observations indicate that plant cell walls may have more distinct chemical (and functional?) domains than previously envisaged.  相似文献   

12.
Cell walls isolated from dicotyledon tissues compete with natural plant host sites for Agrobacterium tumefaciens (strain B6) when co-inoculated with infectious bacteria, thereby reducing tumor initiation. Removal of the pectic fraction from the cell walls results in loss of inhibition and the soluble pectic fraction is inhibitory. On treatment with pectin methyl transferase plus S-adenosyl-L-methionine these cell walls become less inhibitory and this change is reversible by pectinesterase. Cell walls isolated from monocotyledons, crown gall tumors or embryonic dicotyledons do not compete for Agrobacterium in the infection assay. These cell walls become inhibitory on treatment with pectinesterase and this is partially reversed by pectin methyl transferase. These data indicate that the pectic portion of the host cell wall is involved in the Agrobacterium -host adherence which is essential for tumor initiation and that the degree of methylation of polygalacturonic acid is critical to this adherence.  相似文献   

13.
An elicitor of phytoalexin accumulation (endogenous elicitor) is solubilized from purified cell walls of soybean (Glycine max [L.] Merr., cv. Wayne) by extracting the walls with hot water or by subjecting the walls to partial acid hydrolysis. The endogenous elicitor obtained from soybean cell walls binds to an anion exchange resin. The elicitor-active material released from the resin contains oligosaccharides rich in galacturonic acid; small amounts of rhamnose and xylose are also present. The preponderance of galacturonic acid in the elicitor-active fragments suggests that the elicitor is, in fact, a fragment of a pectic polysaccharide. This possibility is supported by the observation that treatment of the wall fragments with a highly purified endopolygalacturonase destroys their ability to elicit phytoalexin accumulation. This observation, together with other evidence presented in this paper, suggests that galacturonic acid is an essential constituent of the elicitor-active wall fragments. Endogenous elicitors were also solubilized by partial hydrolysis from cell walls of suspension-cultured tobacco, sycamore, and wheat cells.  相似文献   

14.
The Cnr ( C olourless n on- r ipening) tomato ( Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were found in the solubility and composition of the pectic polysaccharides extracted from the CWM at both stages of development. In comparison with the wild type, the ripening-associated solubilisation of homogalacturonan-rich pectic polysaccharides was reduced in Cnr. The proportion of carbohydrate that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained larger amounts of galactosyl- and arabinosyl-containing polysaccharides that were tightly bound in the cell wall and could only be extracted with 4 M KOH, or remained in the insoluble residue. The complexity of the cell wall alterations that occur during fruit ripening and the significance of different extractable polymer pools from cell walls are discussed in relation to the Cnr phenotype.  相似文献   

15.
K. Niehaus  D. Kapp  A. Pühler 《Planta》1993,190(3):415-425
Mutants of the symbiotic soil bacterium Rhizobium meliloti that fail to synthesize the acidic exopolysaccharide EPS I were unable to induce infected root nodules on Medicago sativa L. (alfalfa). These strains, however, elicited pseudonodules that contained no infection threads or bacteroids. The cortical cell walls of the pseudonodules were abnormally thick and incrusted with an autofluorescent material. Parts of these cell walls and wall appositions contained callose. Biochemical analysis of nodules induced by the EPS I-deficient R. meliloti mutant revealed an increase of phenolic compounds bound to the nodule cell walls when compared with the wild-type strain. These microscopic and biochemical data indicated that a general plant defence response against the EPS I-deficient mutant of R. meliloti was induced in alfalfa pseudonodules. Following prolonged incubation with the EPS I-deficient R. meliloti mutant, the defence system of the alfalfa plant could be overcome by the rhizobium mutant. In the case of the delayed infections, the mutants colonized lobes of the pseudonodules, but the infection threads in these nodules had an abnormal morphology. They were greatly enlarged and did not contain the typical gum-like matrix inside. The bacteria were tightly packed. Based on the mechanism of phytopathogenic interactions, we propose that EPS I or a related compound may act as a suppressor of the alfalfa plant defence system, enabling R. meliloti to infect the plant.  相似文献   

16.
After a brief period of biotrophic growth, the anthracnose fungus Colletotrichum lindemuthianum (Sacc. et Mgn.) Bri et Cav. develops extensively in bean leaf cells, causing severe wall alterations and death of the host protoplast. Aplysia gonad lectin, a polygalacturonic acid-binding agglutinin, was complexed to gold and used to study the extent of pectin breakdown during the necrotrophic phase of the infection process. In view of its specific binding properties for the endopolygalacturonase produced by C. lindemuthianum, a polygalacturonase-inhibiting protein isolated from bean cell walls was successfully tagged with gold particles and used for localizing the sites of enzyme accumulation in infected host tissues. The basal level of endopolygalacturonase produced by C. lindemuthianum grown in culture was found to increase severalfold when the fungus developed in host plant tissues. The enzyme was able to diffuse freely in the host cell wall, causing drastic degradation of the pectic material of primary walls and middle lamella matrices. The enzymatic alteration of plant cell walls was accompanied by the release of pectic fragments and by the accumulation of pectic molecules at specific sites, such as intercellular spaces and aggregated cytoplasm of infected host cells. The occurrence of pectic molecules at those sites where fungal growth is likely to be restricted is discussed in relation to their origin and their implication in the plant's defense system.  相似文献   

17.
Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant–Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific ‘multicellular’ structures – bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen‐induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum‐caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host–pathogen integration, since the formation of these structures requires the action of both partners.  相似文献   

18.
The ultrastructure of the calcareous red coralline alga Lithothrix aspergillum Gray and the development of the various tissue types has been studied. The sub-apical meristematic tissue alternately produces genicular or intergenicular cells. The genicular cells rapidly elongate and their cell walls thicken and become denser as more fibrillar wall material is laid down within the cell wall. These cells contain little cytoplasm and few organelles. The inter genicular cells which elongate only slightly during development have a small vacuole and many free starch grains in the cytoplasm. The peripheral cells in each inter genicular layer remain meristematic and form a cortical cell layer over the genicular cells. These cortical cells and the apical meristematic cells are covered by small epidermal cells which have extensive cell wall ingrowths between the chloroplasts. The inter genicular cells are calcified. Although the CaCO3 is laid down within the cell walls, there is always a thin layer of CaCO3-free organic cell wall material between the plasmalemma and the CaCO3 impregnated wall. Only the distal tips of the genicular cells are calcified. In old genicular tissues of Lithothrix, secondary deposits of CaCO3 of unknown crystallography are also found in the spaces between the cell walls. Thus there appear to be at least two mechanisms of calcification in this alga.  相似文献   

19.
Concentrated binary mixtures of polymers in solution commonly exhibit immiscibility, resolving into two separate phases each of which is enriched in one polymer. The plant cell wall is a concentrated polymer assembly, and phase separation of the constituent polymers could make an important contribution to its structural organization and functional properties. However, to our knowledge, there have been no published reports of the phase behavior of cell wall polymers, and this phenomenon is not included in current cell wall models. We fractionated cell walls purified from the pericarp of unripe tomatoes (Lycopersicon esculentum) by extraction with cyclohexane diamine tetraacetic acid (CDTA), Na2CO3, and KOH and examined the behavior of concentrated mixtures. Several different combinations of fractions exhibited phase separation. Analysis of coexisting phases demonstrated the immiscibility of the esterified, relatively unbranched pectic polysaccharide extracted by CDTA and a highly branched, de-esterified pectic polysaccharide present in the 0.5 N KOH extract. Some evidence for phase separation of the CDTA extract and hemicellulosic polymers was also found. We believe that phase separation is likely to be a factor in the assembly of pectic polysaccharides in the cell wall and could, for example, provide the basis for explaining the formation of the middle lamella.  相似文献   

20.
Cell walls in the coenocytic green seaweed Codium vermilara (Olivi) Chiaje (Bryopsidales, Chlorophyta) are composed of ~32% (w/w) β‐(1→4)‐d‐mannans, ~12% sulfated polysaccharides (SPs), and small amounts of hydroxyproline‐rich glycoprotein‐like (HRGP‐L) compounds of the arabinogalactan proteins (AGPs) and arabinosides (extensins). Similar quantities of mannans and SPs were reported previously in the related seaweed C. fragile (Suringar) Hariot. Overall, both seaweed cell walls comprise ~40%–44% of their dry weights. Within the SP group, a variety of polysaccharide structures from pyruvylated arabinogalactan sulfate and pyruvylated galactan sulfate to pyranosic arabinan sulfate are present in Codium cell walls. In this paper, the in situ distribution of the main cell‐wall polymers in the green seaweed C. vermilara was studied, comparing their arrangements with those observed in cell walls from C. fragile. The utricle cell wall in C. vermilara showed by TEM a sandwich structure of two fibrillar‐like layers of similar width delimiting a middle amorphous‐like zone. By immuno‐ and chemical imaging, the in situ distribution of β‐(1→4)‐d‐mannans and HRGP‐like epitopes was shown to consist of two distinct cell‐wall layers, whereas SPs are distributed in the middle area of the wall. The overall cell‐wall polymer arrangement of the SPs, HRGP‐like epitopes, and mannans in the utricles of C. vermilara is different from the ubiquitous green algae C. fragile, in spite of both being phylogenetically very close. In addition, a preliminary cell‐wall model of the utricle moiety is proposed for both seaweeds, C. fragile and C. vermilara.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号