首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single treatment with a low pH solution of bean plants led to serious changes in the net photosynthetic rate (P N) as well as in various parameters of photosystem 2 (PS2) activity. A considerable suppression of P N was established already in the first hours (3 and 5) following the acid treatment (pH 2.4-1.8). The period of strong inhibition of CO2 uptake and photochemical activity was followed by the period of recovery (24-72 h). At a single spraying, pH values exceeding 2.0 did not lead to irreversible damages of the photosynthetic apparatus. The damages resulting from treatments with pH 2.0 and 1.8 were on the threshold of irreversible ones and were the cause of faster ageing. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Palanisamy  K. 《Photosynthetica》2000,36(4):635-638
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) µmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered.  相似文献   

3.
Sharma-Natu  Poonam  Khan  F.A.  Ghildiyal  M.C. 《Photosynthetica》1998,34(4):537-543
Wheat (T. aestivum) cvs. Kalyansona and Kundan grown under atmospheric (CA) and elevated CO2 concentrations (650±50 cm3 m-3 - CE) in open top chambers were examined for net photosynthetic rate (PN), stomatal limitation (l s) of P N, ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, and saccharide content of the leaves. The P N values of both CA- and CE-grown plants compared at the same CO2 concentration showed a down regulation under CE at the post-anthesis stage. The negative acclimation of P N appeared to be due to both stomatal and mesophyll components, and the RuBPC activity got also adjusted. There was a decrease in activation state of RuBPC under CE. In connection with this, an increased accumulation of saccharides in wheat leaf under CE was observed. Kalyansona, owing to its larger sink potential in terms of the number of grains, showed a greater enhancement under CE in both post-ear emergence dry matter production and grain yield. Under CE, this cultivar also showed a lower down regulation of P N than Kundan.  相似文献   

4.
Bothriochloa ischaemum L. is an important species in many temperate regions, but information about the interactive effects of water stress and fertilization on its photosynthetic characteristics was inadequate. A pot experiment was conducted to investigate the effects of three water [80% (HW), 40% (MW), and 20% (LW) of field capacity (FC)] and four fertilization regimes [nitrogen (N), phosphorus (P), nitrogen with phosphorus (NP), and no fertilization] on leaf photosynthesis. Leaf gas exchange and photosynthetic light-response curves were measured at the flowering phase of B. ischaemum. Water stress decreased not only the leaf gas-exchange parameters, such as net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), and water-use efficiency (WUE) of B. ischaemum, but also downregulated P N-photosynthetically active radiation (PAR) curve parameters, such as light-saturated net photosynthetic rate (P Nmax), apparent quantum efficiency (AQE), and light compensation point (LCP). Fertilization (N, P, and NP) enhanced the daily mean P N values and P Nmax under the HW regime. Addition of N (either alone or with P) improved the photosynthetic capacity of B. ischaemum under the MW and LW regimes by increasing P N, P Nmax, and AQE and reducing dark respiration rate and LCP, but the addition of P alone did not significantly improve the photosynthetic performance. Decline in P N under each fertilization regime occurred during the day and it was caused mainly by nonstomatal limitation. Our results indicated that water was the primary limiting factor for photosynthesis in B. ischaemum, and that appropriate levels of N fertilization improved its potential photosynthetic capacity under water-deficit conditions.  相似文献   

5.
The photosynthetic responses to salt stress were examined in a wheat (Triticum aestivum L. cv. Asakaze)–barley (Hordeum vulgare L. cv. Manas) 7H addition line having elevated salt tolerance and compared to the parental wheat genotype. For this purpose, increasing NaCl concentrations up to 300 mM were applied and followed by a 7-day recovery period. Up to moderate salt stress (200 mM NaCl), forcible stomatal closure, parallel with a reduction in the net assimilation rate (P N), was only observed in wheat, but not in the 7H addition line or barley. Since the photosynthetic electron transport processes of wheat were not affected by NaCl, the impairment in P N could largely be accounted for the salt-induced decline in stomatal conductance (g s), accompanied by depressed intercellular CO2 concentration and carboxylation efficiency. Both, P N and nonstomatal limitation factors (Lns) were practically unaffected by moderate salt stress in barley and in the 7H addition line due to the sustained g s, which might be an efficient strategy to maintain the efficient photosynthetic activity and biomass production. At 300 mM NaCl, both P N and g s decreased significantly in all the genotypes, but the changes in P N and Lns in the 7H addition line were more favourable similar to those in wheat. The downregulation of photosynthetic electron transport processes around PSII, accompanied by increases in the quantum yield of regulated energy dissipation and of the donor side limitation of PSI without damage to PSII, was observed in the addition line and barley during severe stress. Incomplete recovery of P N was observed in the 7H addition line as a result of declined PSII activity probably caused by enhanced cyclic electron flow around PSI. These results suggest that the better photosynthetic tolerance to moderate salt stress of barley can be manifested in the 7H addition line which may be a suitable candidate for improving salt tolerance of wheat.  相似文献   

6.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

7.
Khan  N.A. 《Photosynthetica》2004,42(3):477-480
The pattern of activity of 1-aminocyclopropane carboxylic acid synthase (ACS) was similar to photosynthetic and growth traits observed at 30, 45, and 60 d after sowing in mustard (Brassica juncea L.) cultivars Varuna and RH 30 differing in photosynthetic capacity. Higher activity of ACS and therefore ethylene release in Varuna than RH 30 increased stomatal conductance, intercellular CO2 concentration, carboxylation rate (carbonic anhydrase and intrinsic water use efficiency), and thus net photosynthetic rate (P N) and leaf and plant dry masses (DM) at all sampling times. Moreover, Varuna also had larger leaf area which contributed to higher P N and DM. A positive correlation between ACS activity and P N and leaf area was found in both the cultivars. Thus ACS activity may affect P N through ethylene-induced changes on foliar gas exchange and leaf growth.  相似文献   

8.
The Amur Grape (Vitis amurensis Rupr.) cultivars ??shuangFeng?? and ??ZuoShanyi?? were grown in shelter greenhouse under natural sunlight and subjected to drought. Sap flow rate, net photosynthetic rate (P N), and chlorophyll (Chl) fluorescence were measured on Amur Grape leaves subjected to different drought treatments. Significant decreases in P N were associated with increasing intercellular CO2 concentration (C i), suggesting that the reduction in P N was caused by nonstomatal limitation. Analysis of OJIP transients according to the JIP-test protocol revealed that specific (per PSII reaction center) energy fluxes for light absorption, excitation energy trapping and electron transport have significantly changed. The appearance of a pronounced K-step and J-step in polyphasic rise of fluorescence transient suggested the oxygen-evolving complex and electron transport were inhibited. Drought stress has relatively little effect on the parameter maximal quantum yield of PSII photochemistry (Fv/Fm), but the performance index (PIABS) is more sensitive in different drought treatment. There are cultivar differences in the response of PSII activity to drought, the photosynthetic apparatus of ??ZuoShanyi?? cultivar is more resistant to drought than that of ??ShuangFeng??, and JIP-test could be a useful indicator for evaluation and selection to drought tolerance.  相似文献   

9.
Drought stress enhances the production of superoxide radical (O2 ._) and superoxide dismutase catalyses dismutation of it to H2O2 and O2, and hence provides a first line of defense against oxidative stress. Over-expression of a cytosolic copper-zinc superoxide dismutase, cloned from Potentilla atrosanguinea (PaSOD), in potato (Solanum tuberosum ssp. tuberosum L. cv. Kufri Sutlej) resulted in enhanced net photosynthetic rates (PN) and stomatal conductance (gs) compared to that in the wild type (WT) plants under control (irrigated) as well as drought stress conditions. Drought stress declined leaf water potential, PN, gs, photosystem II activity, and chlorophyll content, but increased proline and O2 ._ content more in WT than transgenic potato plants (SS5). The significantly higher SOD activity in SS5 coincided well with lower O2 ._ content suggesting its role in maintaining higher gs and PN in transgenic potato plants.  相似文献   

10.
The relationships between dark respiration rate (R D) and net photosynthetic rate (P N) in Quercus ilex L. shrubs growing at the Botanical Garden in Rome were analysed. Correlation analysis of the data sets collected in the year 2006 confirmed the dependence among the considered leaf traits, in particular, R D was significantly (p<0.05) correlated with P N (r = 0.40). R D and P N increased from March to May [1.40±0.10 and 10.1±1.8 μmol(CO2) m−2 s−1 mean values of the period, respectively], when air temperature was in the range 14.8–25.2 °C, underlining the highest metabolic activity in the period of the maximum vegetative activity that favoured biomass accumulation. On the contrary, the highest R D [1.60±0.02 μmol(CO2) m−2 s−1], associated to the lowest P N rates (44 % of the maximum) and carbon use efficiency (CUE) in July underlined the mobilization of stored material during drought stress by a higher air temperature (32.7 °C).  相似文献   

11.
Trehalose can reduce stomatal aperture by a hydrogen-peroxide-dependent pathway in Vicia faba L. (cv. Daqingpi) resulting in significantly lower values of net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E). At 8 and 24 h, the lower PN in trehalose-treated plants was accompanied by significant decrease in intercellular CO2 concentration (ci) suggesting that the reduction of PN was caused by stomatal limitation. At 48 and 72 h, trehalose decreased apparent carboxylation efficiency (PN/ci) and did not decrease ci and gs compared with controls; therefore the reduction in photosynthesis was caused by non-stomatal limitation. Trehalose treatment resulted in significantly higher effective photochemical efficiency of PS II (ΦPSII) and did not affect maximum photochemical efficiency of PS II (Fv/Fm). At 24, 48, and 72 h, trehalose decreased non-photochemical quenching (NPQ) and increased photochemical quenching (qP). Our results suggest that trehalose did not damage photosynthetic reaction centers.  相似文献   

12.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (ψ1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf ψ1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.  相似文献   

13.
We compared the interactive effects of temperature and light intensity on growth, photosynthetic performance, and antioxidant enzyme activity in Zizania latifolia Turcz. plants in this study. Plants were grown under field (average air temperature 9.6–25°C and average light intensity 177–375 W m?2) or greenhouse (20–32°C and 106–225 W m?2) conditions from the spring to the early summer. The results indicated that greenhouse-grown plants (GGP) had significantly higher plant height, leaf length, and leaf width, but lower leaf thickness and total shoot mass per cluster compared with field-grown plants (FGP). Tiller emergence was almost completely suppressed in GGP. Significantly higher chlorophyll (Chl) content and lower Chl a/b ratio were observed in GGP than in FGP. From 4 to 8 weeks after treatment (WAT), net photosynthetic rate (P N) was significantly lower in FGP than in GGP. However, from 9 to 12 WAT, P N was lower in GGP, accompanied by a decrease in stomatal conductance (g s) and electron transport rate (ETR) compared with FGP. Suppressed P N in GGP under high temperature combined with low light was also indicated by photosynthetic photon flux density (PPFD) response curve and its diurnal fluctuation 10 WAT. Meanwhile, ETR in GGP was also lower than in FGP according to the ETR — photosynthetically active radiation (PAR) curve. The results also revealed that GGP had a lower light saturation point (LSP) and a higher light compensation point (LCP). From 4 to 8 WAT, effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (qP), and ETR were slightly lower in FGP than in GGP. The activities of ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), superoxide dismutase (SOD), and malondialdehyde (MDA) content were significantly higher from 4 to 8 WAT, but lower from 10 to 12 WAT in FGP. However, catalase (CAT) activity was significantly lower in FGP from 4 to 8 WAT. Our results indicated that the growth and photosynthetic performance of Z. latifolia plants were substantially influenced by temperature, as well as light intensity. This is helpful to understand the physiological basis for a protected cultivation of this crop.  相似文献   

14.
Diurnal dynamics of photosynthetic character of Angelica sinensis, as well as effect of continuous cropping on leaf photosynthetic character, antioxidant enzyme activity and growth of A. sinensis were investigated under field condition. The results showed that the diurnal net photosynthetic rate of A. sinensis in sunny day exhibited a double-peak pattern, and the peaks occurred at 9:45 and 16:45 h, respectively. There was a significant midday depression with A. sinensis, which was caused principally by stomatal factors such as stomatal conductance. The results also showed that net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), intercellular CO2 concentration (C i), and chlorophyll content (Chl) of A. sinensis plants under continuous cropping were significantly lower than those of the control. The activity of total superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and growth parameters of A. sinensis plants were significantly decreased under continuous cropping condition. This study provides evidence of continuous cropping obstacle effect on photosynthesis, antioxidant enzyme activity, and growth parameters of A. sinensis in a field experiment, which partly explained the yield reduction of A. sinensis in the field, when it was cultivated continuously on the same soil.  相似文献   

15.
Phytoecdysteroids are steroid compounds present in many plant species (sometimes in rather large amounts), but their biological role is still far from being clear. We have found that the exogenous application of 20-hydroxyecdysone (20E) to leaves of Tetragonia tetragonioides L. causes stimulation of its net photosynthetic rate (P N) but does not positively affect the photosynthetic electron transport or the content of photosynthetic pigments. The increase in P N was observed shortly after 20E treatment and was statistically significant during the 4th and 6th hours after treatment but not later, which could be perhaps caused by a strictly short-term window of opportunity for ecdysteroids to significantly affect photosynthetic processes. To our knowledge, these results are the first to suggest a new potential biological function of phytoecdysteroids—regulation of photosynthesis.  相似文献   

16.
Anastatica hierochuntica is an annual desert plant, which was recently shown to have unusually low nonphotochemical quenching (NPQ) and a high PSII electron transport rate (ETR). In the current study, we examined how these unusual characteristics are related to a lack of CO2 and inhibition of net photosynthetic rate (PN). We compared the photosynthetic and photoprotective response of A. hierochuntica and sunflower (Helianthus annuus), under conditions of photosynthetic inhibition, with either low CO2 or drought. We found that under nonsteady state conditions of low CO2 availability, A. hierochuntica exhibited about half of the NPQ values and almost twice of the ETR values of H. annuus. However, the long-term inhibition of PN under drought caused a similar increase in NPQ and a decrease in ETR in both A. hierochuntica and H. annuus. These results suggest that the unusually low NPQ and high ETR in A. hierochuntica are not directly related to a response to drought conditions.  相似文献   

17.
While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.  相似文献   

18.
Nitrogenase (EC 1.7.99.2) activity (acetylene reduction) and nitrogen fixation (15N2 fixation) were measured in cyanobacteria freshly isolated from the coralloid roots of Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Light and gas phase oxygen concentration had marked interactive effects on activity, with higher (up to 100-fold) rates of acetylene reduction and 15N2 fixation in light. The relationship between ethylene formation and N2-fixation varied in the freshly isolated cyanobacteria from 4 to 7 nanomoles of C2H4 per nanomole 15N2. Intact coralloid roots, incubated in darkness and ambient air, showed a value of 4.3. Maximum rates of nitrogenase activity occurred at about 0.6% O2 in light, while in darkness there was a broad optimum around 5 to 8% O2. Inhibition of nitrogenase, in light, by pO2 above 0.6% was irreversible. Measurements of light-dependent O2 evolution and 14CO2 fixation indicated negligible photosynthetic electron transport involving photosystem II and, on the basis of inhibitor studies, the stimulatory effect of light was attributed to cyclic photophos-phorylation. Nitrogenase activity of free-living culture of an isolate from Macrozamia (Nostoc PCC 73102) was only slightly inhibited by O2 levels above 6% O2 and the inhibition was reversible. These cells showed rates of light-dependent O2 evolution and 14CO2 fixation which were 100- to 200-fold higher than those by the freshly isolated symbiont. Furthermore, nitrogenase activity was dependent on both photosynthetic electron transport and photophosphorylation. These data indicate that cyanobacteria within cycad coralloid roots are differentiated specifically for symbiotic functioning in a microaerobic environment. Specializations include a high heterocyst frequency, enhanced permeability to O2, and a direct dependence on the cycad for substrates to support nitrogenase activity.  相似文献   

19.
The differences between leaves of different age according to their descending insertion level (starting from the youngest, 18th leaf) were compared with the changes occurring during the corresponding period of ontogenesis of the 18th unshaded leaf using the gas exchange [net photosynthetic CO2 uptake (P N ), water vapour efflux (E)] of the adaxial and abaxial surfaces of tobacco leaves as an example. Experimental elimination of the influence of shading during the involved period of ontogenesis of the 18th leaf manifested itself by a relatively slower decrease inP N and by fluctuation of theE values at approximately the same level. Thus the differences between leaves of different insertion levels cannot be exclusively ascribed to the effect of their ontogenetic age.  相似文献   

20.
Net photosynthetic rate (PN), ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, chlorophyll (Chl) content and biomass production were estimated at monthly intervals inChukrasia tabularis, Dolichandrone atrovirens, Eugenia jambolana, Gmelina arborea, Lannea coromandelica, Terminalia arjuna andTerminalia bellerica from September 1990 to August 1991. The leaves of all the seven tree species showed significantly higher PN during summer than in winter and these rates differed from one species to the other. A positive correlation was found between PN of different tree species and their Chl content or biomass production. There was no significant correlation between ribulose-1,5-bisphosphate carboxylase activity and PN when these were expressed on leaf area basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号