首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (beta-NGF), a neurotrophin required for the development and survival of specific neuronal populations, is translated as a prepro-protein in vivo. While the presequence mediates translocation into the endoplasmic reticulum, the function of the pro-peptide is so far unknown. As the pro-sequences of several proteins are known to promote folding of the mature part, the renaturation behaviour of recombinant human beta-NGF pro-protein was compared to that of the mature form. Expression of rh-pro-NGF in Escherichia coli led to the formation of inclusion bodies (IBs). The presence of the covalently attached pro-sequence significantly increased the yield and rate of refolding with concomitant disulfide bond formation when compared to the in vitro refolding of mature NGF (rh-NGF). Physicochemical characterization revealed that rh-pro-NGF is a dimer. The pro-peptide could be removed by limited proteolysis with trypsin yielding biologically active, mature rh-NGF. Furthermore, rh-pro-NGF exhibited biological activity in the same concentration range as rh-NGF.  相似文献   

2.
Protein folding can be modulated in vivo by many factors. While chaperones act as folding catalysts and show broad substrate specificity, some pro-peptides specifically facilitate the folding of the mature protein to which they are bound. Potato carboxypeptidase inhibitor (PCI), a 39-residue protein carboxypeptidase inhibitor, is synthesized in vivo as a precursor protein that includes a 27-residue N-terminal and a seven-residue C-terminal pro-regions. In this work the disulfide-coupled folding of mature PCI in vitro has been compared with that of the same protein extended with either the N-terminal pro-sequence (ProNtPCI) or both N- and C-terminal pro-sequences (ProPCI), and also with the N-terminal pro-sequence in trans (ProNt + PCI). No significant differences can be observed in the folding kinetics or efficiencies of all these molecules. In addition, in vivo folding studies in Escherichia coli have been performed using wild-type PCI and three PCI mutant forms with and without the N-terminal pro-sequence, the mutations had been previously reported to affect folding of the PCI mature form. The extent to which the 'native-like' form was secreted to the media by each construction was not affected by the presence of the N-terminal pro-sequence. These results indicate that PCI does not depend on the N-terminal pro-sequence for its folding in both, in vitro and in vivo in E. coli. However, structural analysis by spectroscopy, hydrogen exchange and limited proteolysis by mass spectrometry, indicate the capability of such N-terminal pro-sequence to fold within the precursor form.  相似文献   

3.
The cysteine endopeptidase streptopain, an extracellular enzyme from pathogenic Streptococcus pyogenes, is synthesized as a precursor containing an NH2-terminal pro-sequence. The pro-sequence of streptopain was expressed in Escherichia coli and subjected to structural and functional investigation. Heat-induced denaturation of the pro-sequence studied using circular dichroism spectroscopy revealed that it forms a compact structure and represents an independently folded domain. The isolated pro-sequence exhibits high affinity towards mature streptopain and associates with its cognate enzyme by forming an equimolar complex. Refolding of denatured streptopain in the presence of pro-sequence in vitro facilitated recovery of active enzyme. Expression of the mature streptopain in E. coli either alone, or in trans with its pro-sequence as an independent polypeptide, led to the formation of insoluble protein aggregates or functionally active enzyme, respectively. These results demonstrate that the pro-sequence domain acts as an intramolecular chaperone that directs the correct folding of the mature streptopain.  相似文献   

4.
Several proteases, including the bacterial serine protease subtilisins, require the assistance of the N-terminal pro-sequence of precursors to produce active, mature enzymes. Upon completion of folding, the pro-sequence is autocatalytically degraded because it is not necessary for the activity or stability of folded, mature cognates of the original enzymes. Therefore, the pro-sequence functions as an intramolecular chaperone that guides correct folding of the protease domain. Interestingly, Shinde et al. proposed a new theory of "protein memory" in which an identical polypeptide can fold into an altered conformation with different secondary structure, stability and specificities through a mutated pro-sequence [Shinde et al. (1997) Nature 389:520–522]. We also showed that the autoprocessing efficiency was improved by modifications in the pro-sequence of mutant subtilisins with altered substrate specificity. Further, the pro-sequence from a subtilisin homologue was found to chaperone the intramolecular folding of denatured subtilisin. These results indicate that engineering of the pro-sequence, i.e., site-directed and/or random mutagenesis, chimeras and gene shuffling between members of the family, would be a useful method for improving the functions of autoprocessing proteases. Conventional protein engineering techniques have thus far employed mutagenesis in the protease domain to modify the enzymatic properties. This new approach, which we term "pro-sequence engineering", is not only an important tool for studying the mechanism of protein folding, but also a promising technology for creating unique proteases with various beneficial properties.  相似文献   

5.
T E Gray  J Eder  M Bycroft  A G Day    A R Fersht 《The EMBO journal》1993,12(11):4145-4150
Three mutants of barnase and a pro-barnase variant, which have a variety of different physical properties but the same overall protein structure, were analysed for their folding in the presence of the molecular chaperone GroEL. Mutants were chosen on the basis that changes in their refolding rate constants in solution are not correlated with the changes in their stability. All barnase variants fold considerably more slowly when bound to GroEL. However, barnase refolding on GroEL parallels that in solution: there is a linear relationship between the refolding rate constants, obtained for wild-type and all mutants of barnase, in the presence and absence of GroEL. Barnase is synthesized in vivo with a 13 amino acid pro-sequence attached to the N-terminus. The pro-sequence of pro-barnase is shown by NMR spectroscopy to be devoid of defined structure. The presence of this pro-sequence has no effect on the overall refolding rate constant or the activity of barnase. In the presence of GroEL, the refolding of pro-barnase is retarded relatively more strongly than that of wild-type and the mutant barnase proteins, suggesting that the pro-sequence provides additional binding sites for the chaperone.  相似文献   

6.
Pro-forms of growth factors have received intensive scientific attention recently because in some cases different biological activities have been ascribed compared with the mature growth factors. Examples are the pro-apoptotic role of the nerve growth factor (NGF) proform (proNGF) or the latency of the transforming growth factor (TGF)-beta pro-form (proTGF-beta). To investigate a possible biological function of the pro-form of bone morphogenetic protein (BMP)-2, a member of the TGF-beta family, mature BMP-2, proBMP-2, and the isolated pro-peptide were recombinantly produced in Escherichia coli cells, and a biophysical comparison was performed. Protocols were developed that allowed efficient refolding and subsequent purification of the proteins. ProBMP-2 could be processed to an N-terminally truncated form of BMP-2, digit removed BMP-2 (drBMP-2), that possessed biological activity, i.e. it induced ectopic bone formation. Bone inducing activity was also displayed by proBMP-2. The three proteins were characterized both by fluorescence and CD spectroscopy. From these analyses, predominant beta-sheet secondary structural elements in the pro-peptide were deduced. The thermodynamic stability of the pro-peptide was determined by chemical unfolding assays. As in the case of NGF/proNGF, the mature part of BMP-2 stabilized the structure of the pro-peptide moiety. However, in contrast to NGF/proNGF, the pro-peptide did not stimulate oxidative folding of the mature part in vitro.  相似文献   

7.
We have previously shown that the pro-peptide of human nerve growth factor (NGF) facilitates oxidative folding of the mature part. For the analysis of functional specificities of the pro-peptides of NGF and the related neurotrophin-3 (NT-3) with respect to structure formation, chimeric proteins with swapped pro-peptides were generated. Neither the structure nor the stability of the mature domains was influenced by the heterologous pro-peptides. For the pro-peptide of NT-3 fused to the mature part of NGF, stabilization of the pro-peptide moiety by the NGF part was observed. Folding kinetics and renaturation yields of this chimeric protein were comparable to those of proNGF. Our results demonstrate functional interchangeability between the pro-peptides of NGF and NT-3 with respect to their role in assisting oxidative folding of the mature part.  相似文献   

8.
Subtilisin E, an alkaline serine protease of Bacillus subtilis 168, is first produced as a precursor, pre-pro-subtilisin, which consists of a signal peptide for protein secretion (pre-sequence) and a peptide extension of 77 amino acid residues (pro-sequence) between the signal peptide and mature subtilisin. When the entire coding region for pre-pro-subtilisin E was cloned into an Escherichia coli expression vector, active mature subtilisin E was secreted into the periplasmic space. When the pre-sequence was replaced with the E. coli OmpA signal peptide, active subtilisin E was also produced. When the OmpA signal peptide was directly fused to the mature subtilisin sequence, no protease activity was detected, although this product had the identical primary structure as subtilisin E as a result of cleavage of the OmpA signal peptide and was produced at a level of approximately 10% of total cellular protein. When the OmpA signal peptide was fused to the 15th or 44th amino acid residue from the amino terminus of the pro-sequence, active subtilisin was also not produced. These results indicate that the pro-sequence of pre-pro-subtilisin plays an important role in the formation of enzymatically active subtilisin. It is proposed that the pro-sequence is essential for guiding appropriate folding of the enzymatically active conformation of subtilisin E.  相似文献   

9.
Penicillin amidase (PA) is a bacterial periplasmic enzyme synthesized as a pre-pro-PA precursor. The pre-sequence mediates membrane translocation. The intramolecular pro-sequence is expressed along with the A and B chains but is rapidly removed in an autocatalytic manner. In extensive studies we show here that the pro-peptide is required for the correct folding of PA. Pro-PA and PA unfold via a biphasic transition that is more pronounced in the case of PA. According to size-exclusion chromatography and limited proteolysis experiments, the inflection observed in the equilibrium unfolding curves corresponds to an intermediate in which the N-terminal domain (A-chain) still possesses native-like topology, whereas the B-chain is unfolded to a large extent. In a series of in vitro experiments with a slow processing mutant pro-PA, we show that the pro-sequence in cis functions as a folding catalyst and accelerates the folding rate by seven orders of magnitude. In the absence of the pro-domain the PA refolds to a stable inactive molten globule intermediate that has native-like secondary but little tertiary structure. The pro-sequence of the homologous Alcaligenes faecalis PA can facilitate the folding of the hydrolase domain of Escherichia coli PA when added in trans (as a separate polypeptide chain). The isolated pro-sequence has a random structure in solution. However, difference circular dichroism spectra of native PA and native PA with pro-peptide added in trans suggest that the pro-sequence adopts an alpha-helical conformation in the context of the mature PA molecule. Furthermore, our results establish that Ca2+, found in the crystal structure, is not directly involved in the folding process. The cation shifts the equilibrium towards the native state and facilitates the autocatalytic processing of the pro-peptide.  相似文献   

10.
The amino-terminal pro-sequence consisting of 77 amino acid residues is required to guide the folding of secreted subtilisin E, a serine protease, into active, mature enzyme (ikemura et al., 1987). Furthermore, denatured subtilisin E can be folded to active enzyme in an intermolecular process with the aid of an exogenously added pro-subtilisin E, the active site of which was mutated (Zhu et al., 1989). In this report, we have synthesized the pro-peptide of 77 residues (corresponding to -1 to -77 in the sequence, where residue +1 is the N-terminal amino acid residue of the mature protein), and have found that it could intermolecularly complement the folding of denatured subtilisin E to active enzyme. Furthermore, we have found that the synthetic pro-peptide exhibits specific strong binding to the active mature enzyme by inhibiting it competitively at its active centre with an upper limit to a Ki of 5.4 x 10(-7). In contrast, synthetic pro-peptides corresponding to -44 to -77, -1 to -64 and -1 to -43 inhibited the enzyme with Ki values weaker by two orders of magnitude. The results indicate that the sequence extending from -1 to -77 is essential for specificity of interaction, perhaps generating a conformation that accounts for both roles found hitherto, i.e. specific binding to the active centre, and guiding of the refolding to active enzyme. Thus these results suggest that the pro-peptide functions as an intramolecular chaperone [corrected].  相似文献   

11.
Normally, proteins will aggregate and precipitate by direct folding processes. In this study, we report that quasi-static processes can restore both the structure and bio-function of two kinds of fish recombinant growth hormones (Plecoglossus altivelis and Epinephelus awoara). The conformational changes and the particle-size-distribution (PSD) of each refolding intermediate can be monitored by circular dichroism spectroscopy (CD) and dynamic light scattering (DLS), respectively. Conformation analysis of the CD spectra of the refolding intermediates indicated that the secondary structures were restored in the initial refolding intermediate. However, the tertiary interactions of the proteins were restored during the last two refolding stages, as elucidated by thermal stability tests. This is consistent with a sequential model. DLS analysis suggested that the average hydrodynamic radii of the refolding intermediates shrank to their native-like sizes after the first refolding stage. This is consistent with a collapse model. After comparison with the data on the direct folding process, it is concluded that the denaturant-containing protein folding reaction is a first-order-like state transition process.  相似文献   

12.
The Bacillus cereus cnp gene coding for the thermolysin-like neutral protease (TNP) has been cloned, sequenced, and expressed in Bacillus subtilis. The protease is first produced as a pre-pro-protein (M(r) = 61,000); the pro-peptide is approximately two-thirds of the size of the mature protein. The pro-sequence has been compared with those of six other TNPs, and significant homologies have been found. Additionally, the TNP pro-sequences are shown to be homologous to the pro-sequence of Pseudomonas aeruginosa elastase. A mutant has been constructed from cnp, in which 23 amino acids upstream from the pro-protein processing site have been deleted. This region has no homologous analogue in any of the other TNP pro-sequences. The deletion results in a delay of six to eight hours in detection of active protease in the growth medium, as well as a 75% decrease in maximum protease production. N-terminal analysis of the mutant mature protein demonstrates that the processing site is unaltered by the pro-sequence deletion. The deletion must, therefore, modulate the kinetics of processing and/or secretion of the pro-protein.  相似文献   

13.
Melarsen oxide [p-(4,6-diamino-1,3,5-triazin-2-yl)aminophenylarsonous acid (MEL)], which selectively bridges spatially neighboring bis-cysteinyl residues in (reduced) proteins, was used to trap folding intermediates chemically during 1) time-dependent renaturation of recombinant human macrophage colony-stimulating factor (rhM-CSF); by redox refolding in vitro; 2) reductive unfolding in the presence of the trapping reagent; and 3) denaturing unfolding reactions in urea and guanidinium hydrochloride. Characterization of intermediates from folding and unfolding reactions was performed by electrospray ionization mass spectometry (ESI-MS). In all folding and unfolding reactions a characteristic dimeric intermediate with two attached melarsen oxide (MEL) groups was observed, suggesting that these rhM-CSF β species were important refolding intermediates. These intermediates presented a characteristic “charge structure” in ESI spectra with a most abundant 26+ charged molecular ion whereas the mature homodimeric rhM-CSF β showed a most abundant 23+ molecular ion, indicating that the final product was more compact. The major locations of the two MEL groups were identified by mass spectrometric peptide mapping at cysteine residues C157 and C159 from each monomer. Cysteine residues C7 and C90 were minor modification sites. The mass spectrometric results from the in vitro folding reactions of rhM-CSF β are in agreement with intrinsic tryptophan fluorescence measurements and are consistent with the folding pathway that starts with a fully reduced monomer (R), includes partially folded monomeric intermediates (M) and dimeric intermediates (D), and yields a final product with the native tertiary structure (N): 2R ⇒ 2M ⇒ D ⇒ N. Our results show that selective chemical trapping of bis-thiol groups of proteins with MEL permits study of folding pathways by mass spectrometric structure characterization of intermediates with otherwise transient conformations. Proteins Suppl. 2:50–62, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Proregions of bone morphogenetic proteins (BMPs) fulfill important biological functions as intramolecular chaperones and for extracellular targeting of the mature signal ligand. Knowledge of the structures of the proregions would contribute to a more comprehensive picture of the biological activities of the pro-forms of BMP growth factors. In this study, a protease resistant core domain of the proregions of three BMPs was identified. For a more detailed analysis, the core domain of the BMP-2 proregion was recombinantly produced. Unfolding/refolding experiments and spectroscopic analyses proved that the core domain can be obtained as a folded entity. Binding of the core domain to the mature growth factor was demonstrated by SPR. Via peptide microarray analysis, residues within the core fragment could be identified that engage in binding to the dimeric, mature domain. Our study reveals that diverse members of the BMP family share a common, independently folding core domain within the large proregions peculiar to TGF-β superfamily members that may serve as a scaffold for folding and assembly of the dimeric proprotein complexes.  相似文献   

15.
In order to analyze the role of the pro-sequence in folding of the alkaline serine protease subtilisin, localized random mutagenesis using the polymerase chain reaction with Taq DNA polymerase was employed to obtain mutations in the pro-sequence which prevent production of active protease. The unique aspect of this procedure is that random mutations can be easily generated in vitro over large but defined regions of a specific gene. The method was applied to a 458-base pair fragment encompassing the coding region of the pro-sequence of subtilisin, a region of the protein which has been shown to be required for proper folding. Protease-deficient mutants containing a variety of amino acid substitutions were isolated with a frequency of 4.3%. From analysis of these mutants, four independent amino acid substitution mutations in the pro-sequence were identified. The present results demonstrate that polymerase chain reaction is an efficient and simple method for obtaining random mutations within a localized region of a given gene.  相似文献   

16.
Myostatin (growth and differentiation factor-8) is a member of the transforming growth factor-beta superfamily, is expressed mainly in skeletal muscle and acts as a negative growth regulator. Mature myostatin (C-terminal) is a homodimer that is cleaved post-translationally from the precursor myostatin, also yielding the N-terminal prodomain. We expressed in Escherichia coli three forms of fish myostatin: precursor, prodomain and mature. The three forms were over-expressed as inclusion bodies. Highly purified inclusion bodies were solubilized in a solution containing guanidine hydrochloride and the reducing agent DTT. Refolding (indicated by a dimer formation) of precursor myostatin, mature myostatin or a mixture of prodomain and mature myostatin was compared under identical refolding conditions, performed in a solution containing sodium chloride, arginine, a low concentration of guanidine hydrochloride and reduced and oxidized glutathione at 4 degrees C for 14 days. While precursor myostatin formed a reversible disulfide bond with no apparent precipitation, mature myostatin precipitated in the same refolding solution, unless CHAPS was included, and only a small proportion formed a disulfide bond. The trans presence of the prodomain in the refolding solution prevented precipitation of mature myostatin but did not promote formation of a dimer. Proteolytic cleavage of purified, refolded precursor myostatin with furin yielded a monomeric prodomain and a disulfide-linked, homodimeric mature myostatin, which remained as a latent complex. Activation of the latent complex was achieved by acidic or thermal treatments. These results demonstrate that the cis presence of the prodomain is essential for the proper refolding of fish myostatin and that the cleaved mature dimer exists as a latent form.  相似文献   

17.
Aqualysin I is a subtilisin-type serine protease secreted into the medium by Thermus aquaticus YT-1. Thermus thermophilus cells harboring a plasmid for the aqualysin I precursor secreted pro-aqualysin I with the C-terminal pro-sequence into the culture medium, and the precursor was then processed to the mature enzyme during the cultivation. However, the extracellular levels of aqualysin I in T. thermophilus cells harboring plasmids for deletion mutants as to the C-terminal pro-sequence were about 10–20% in comparison with the level of wild-type. Only the mature enzyme could be detected in the medium, while pro-aqualysin I with the C-terminal pro-sequence could not. These results suggest that the C-terminal pro-sequence of aqualysin I plays an important role in the extracellular secretion of aqualysin I.  相似文献   

18.
Kim DH  Jang DS  Nam GH  Choi KY 《Biochemistry》2001,40(16):5011-5017
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.  相似文献   

19.
Some slow-folding phases in the in vitro refolding of proteins originate from the isomerization of prolyl-peptide bonds, which can be accelerated by a class of enzymes called prolyl isomerases (PPIs). We used the in vitro folding of an antibody Fab fragment as a model system to study the effect of PPI on a folding reaction that is only partially reversible. We show here that members of both subclasses of PPIs, cyclophilin and FK 506 binding protein (FKBP), accelerate the refolding process and increase the yield of correctly folded molecules. An acceleration of folding was not observed in the presence of the specific inhibitor cyclosporin A, but still the yield of correctly folded molecules was increased. Bovine serum albumin (BSA) increased the yield comparable to cyclophilin but, in contrast, did not influence the rate of reactivation. These effects were observed only when cyclophilin or BSA were present during the first few seconds of refolding. However, the rate-limiting reactivation reaction is still accelerated when PPI is added several minutes after starting refolding. In contrast, the prokaryotic chaperone GroEL influences the refolding yield when added several minutes after initiating refolding. The results show that PPIs influence the folding of Fab in two different ways. (1) They act as true catalysts of protein folding by accelerating the rate-limiting isomerization of Xaa-Pro peptide bonds. Proline isomerization is obviously a late folding step and has no influence on the formation of aggregates within the first seconds of the refolding reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Prion protein has a key role in the occurrence of transmissible spongiform encephalopathy (TSE) and development of these diseases. Here, we provide a convenient procedure for on-column purification and refolding of the full-length mature bovine prion protein (bPrP) from Escherichia coli using immobilized metal (Ni) affinity chromatography, based on the metal-binding property of its unusual octarepeat sequences containing six tandem copies. Following extensive washing, the bPrP pellet was solubilized by guanidine hydrochloride and subjected to Ni-NTA agarose column. Purification and refolding were achieved by stepwise gradient washing with reduced guanidine hydrochloride concentrations. Triton X-100 and beta-mercaptoethanol were required in this rapid refolding process. The isolated prion protein was identified by monoclonal antibodies and its integrity was monitored by mass spectroscopy. Its correct folding was confirmed from circular dichroism (CD) experiments. Moreover, thioflavin T-binding assay showed that the recombinant bPrP could be transformed into amyloid fiber structures like that of the infectious prion isoform PrP(sc).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号