首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
近51年来祁连山植被净初级生产力对气候变化的响应   总被引:2,自引:0,他引:2  
本研究以分辨率为0.1°×0.1°的植被、土壤和气象数据为驱动,利用大气-植被相互作用模型(AVIM2)模拟了祁连山地区1958~2008年植被净初级生产力(NPP),并对近51年来祁连山地区植被NPP对气候变化的响应进行了分析。结果表明:近51年来祁连山植被(常绿针叶林、落叶针叶林、草地、灌木、农田)在气温升高和降水量增加的影响下,NPP总量呈增加趋势,且增加速率依次为:农田>常绿针叶林>落叶针叶林>草地>灌木。植被NPP的变化与气温和降水量的变化均呈正相关关系,且温度变化对植被NPP的影响大于降水,即温度变化是影响祁连山地区植被NPP变化的主导因素。从区域平均来看,气温年平均上升速率为0.043℃·a-1,降水量的平均增加速率为1.355mm·a-1,在气温和降水量的共同作用下,1958~2008年祁连山地区植被NPP总量呈增加趋势,平均增加速率为0.718g·m-2·a-1。  相似文献   

2.
菌根是由土壤中的菌根菌与植物根系形成的互惠共生体, 在植物生产力和生态系统碳循环过程中发挥着重要的作用。该文基于全球森林数据库, 建立了包括全球森林菌根类型、净初级生产力(net primary productivity, NPP)和年平均气温等指标的新数据库。在此基础上, 分析了6种菌根类型(丛枝菌根(arbuscular mycorrhiza, AM)、AM +外生菌根(ectomycorrhiza, ECM)、AM + ECM +内外生菌根(ectendomycorrhiza, EEM)、ECM、ECM + EEM和ECM + EEM +无菌根(nonmycorrhiza, NM))森林的总NPP、地上和地下NPP、树木主干NPP、树叶NPP, 以及树木细根NPP对年平均气温变化的响应。结果表明, 不同菌根类型的森林总NPP、地上和地下NPP虽然都随气温的升高呈现上升的趋势, 但其响应程度因菌根类型的不同而有所差异。除AM和AM + ECM + EEM类型的森林外, 其他4种菌根类型的森林总NPP都随年平均气温的增加而显著增加; 随着菌根类型的不同, 地上和地下NPP对年平均气温变化的响应程度也存在差异, 在AM + ECM类型的森林中, 气温对地上NPP变异的解释率最高, 达到57.27%, 而地下NPP仅在ECM类型和ECM + EEM类型的森林中呈现出与年平均气温显著的回归关系。树木主干、树叶和细根的NPP则随菌根类型的不同而变化, 与气温变化呈现正、负相关关系。从AM与ECM类型的森林的NPP来看, 无论是总NPP还是各个组成部分的NPP, ECM类型的森林的NPP对气温的响应总是较AM类型更为敏感。可见, 不同类型的菌根通过影响森林不同部分的NPP对气温变化的响应程度而影响到森林NPP对气温变化的响应。这表明菌根类型是预测气温变化对森林NPP影响的重要指标。  相似文献   

3.
河西走廊植被净初级生产力时空变化及其影响因子研究   总被引:3,自引:0,他引:3  
干旱半干旱区植被NPP变化对全球碳循环有重要影响,该区域NPP对气候变化的响应表现出较大的时空异质性,其驱动机制并不十分清楚。选择中国河西走廊,利用随机森林算法估算了2002-2018年的NPP,基于偏导数法计算了气候与人类活动对NPP的影响。结果表明:(1)随机森林算法能较好的适用于干旱半干旱区NPP估算。(2)2002-2018年间河西走廊年NPP的平均值为153.32 gC m-2 a-1,总量为37.468 Tg C/a,呈东南向西北递减的分布特征,研究期间NPP呈2.37 gC m-2 a-1P=0.09)增长趋势。(3)河西走廊NPP变化52.51%由气候因子贡献,47.49%由人类活动贡献。(4)在气候变化对NPP的影响中,降水主导了该区72.21%的区域,温度对NPP变化量的贡献占73.71%,前者影响着NPP变化格局,后者主导NPP变化数量。升温和增湿均有利于该区NPP增加,随着西北地区气候暖湿化,河西走廊植被会持续改善,该研究有助于理解干旱半干旱区NPP对气候变化的响应机制,为适应气候变化政策制定提供理论依据。  相似文献   

4.
黄土高原草地净初级生产力时空趋势及其驱动因素   总被引:2,自引:0,他引:2  
草地净初级生产力是生态系统碳循环的关键环节和重要组成部分.本研究使用分段线性回归分析和Pearson相关分析,分析了黄土高原2000-2015年间土地利用类型未改变的草地净初级生产力(NPP)的变化趋势及气候核心因子(年降水量、年强降水量、年有效降水日数、年平均温度、年最高温度、年最低温度)对NPP变化的影响,并借助增...  相似文献   

5.
为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000—2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000—2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m-2 a-1,年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R~2=0.784,P<0.01)。(2)NPP变异系数为0.07—2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441—0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000—2019年吉林省落叶松林年均NPP与年总降水、生长季...  相似文献   

6.
四川植被净第一性生产力(NPP)对全球气候变化的响应   总被引:18,自引:3,他引:15  
胥晓 《生态学杂志》2004,23(6):19-24
根据全球气候变化的趋势 ,利用生态信息系统 (EIS)技术 ,采用植被净第一性生产力模型 ,并结合海拔因素 ,模拟了四川植被净第一性生产力在未来气候 5种水热条件下空间分布格局的变化趋势。结果表明 ,当前四川植被的净第一性生产力 (NPP)从总体上沿东南向西北呈逐渐递减趋势。植被净第一性生产力与降水量呈明显正相关关系 ,二者曲线比较近似。与可能蒸散率呈明显负相关关系 ,与海拔关系比较复杂。在盆地内 ,NPP值主要取决于降水量的多少。在盆地向高原过渡地区和高山高原地区 ,植被净第一性生产力主要取决于可能蒸散率的大小。随着全球气候的变化 ,四川省的植被净第一性生产力将沿东南至西北方向发生面积和值的推移。当温度升高 2 5℃ ,降水量增加 10 %时 ,四川省的植被净第一性生产力将增加13 76 % ,随着降水量增加到 2 0 % ,其值将进一步升高 ,达到 10 92 2TDM·hm-2 ·年 -1。当温度升高 4℃ ,降水量增加 10 %时 ,四川省的植被净第一性生产力将增加 18 2 9% ,随着降水量减少到P 10 %时 ,其值将逐渐减少到 9 5 30TDM·hm-2 ·年-1。  相似文献   

7.
青藏高原是我国重要的草本沼泽分布区,该地区草本沼泽对于东亚生态安全及碳循环具有重要的意义。植被净初级生产力(NPP)是反映生态系统固碳能力的重要指标,气候变化能够显著影响植被NPP。在全球气候变化背景下,青藏高原草本沼泽植被NPP的时空变化及对气候响应机理尚不明确。利用2000―2020年NPP数据和气象数据,对青藏高原草本沼泽植被NPP的时空变化及其对气候变化的响应进行分析。研究表明:青藏高原草本沼泽植被NPP多年平均值为122.80 g C/m2,在2000-2020年青藏高原草本沼泽植被年NPP总体呈现显著增加趋势(0.79 g C m-2 a-1),其中增加趋势最为显著的地区集中于研究区北部。研究发现青藏高原草本沼泽植被NPP主要受年均气温影响,年均降水对青藏高原草本沼泽植被NPP的影响并不显著。在不同季节,夏季和秋季升温均能够显著增加沼泽植被NPP,其中夏季夜晚最低温升高对青藏高原草本沼泽植被生长的促进作用比白天最高温升高更显著。在全球昼夜不对称增温背景下,未来模拟青藏高原草本沼泽植被NPP时,需重点关注白天和夜晚温度变化对草本沼泽植被生长的不同影响。研究结果有助于评估青藏高原草本沼泽植被固碳潜力,并为青藏高原沼泽生态保护提供科学依据。  相似文献   

8.
秦岭山地植被净初级生产力及对气候变化的响应   总被引:3,自引:0,他引:3  
基于1999~2009年的NDVI数据和气象数据,利用CASA模型对秦岭山地植被净初级生产力(Net primary productivity,NPP)进行模拟估算,并分析了秦岭NPP的时空变化特征及其对气候变化的响应。结果表明:1999~2009年11年间秦岭山地的平均年NPP为542.24 gC·m-2·a-1;研究期内秦岭NPP呈显著增长趋势(P<0.01),2008年最高(718.77 gC·m-2·a-1),2001年最低(471.78 gC·m-2·a-1);四季对全年NPP的贡献率大小依次为夏季(49.90%)>春季(26.16%)>秋季(18.87%)>冬季(5.07%);月NPP与温度和降水都显著相关,但与温度的相关性更高,月水平上温度对NPP的影响比降水大;生长季期间NPP与温度和降水的相关性在空间分布上都以正相关为主。  相似文献   

9.
气候变化情景下中国自然植被净初级生产力分布   总被引:10,自引:1,他引:10  
Zhao DS  Wu SH  Yin YH 《应用生态学报》2011,22(4):897-904
基于国际上较通用的Lund-Potsdam-Jena(LPJ)模型,根据中国自然环境特点对其运行机制进行调整,并重新进行了参数化,以B2情景气候数据作为主要的输入数据,以1961-1990年为基准时段,模拟了中国1991-2080自然植被净初级生产力(NPP)对气候变化的响应.结果表明:1961-1990年,中国自然植被的NPP总量为3.06 Pg C·a-1;1961-2080年,NPP总量呈波动下降趋势,且下降速度逐渐加快.在降水相对变化不大的条件下,平均温度的增加对我国植被生产力可能会产生一定的负面影响.NPP的空间分布从东南沿海向西北内陆呈逐渐递减趋势,在气候变化过程中,该格局基本没有太大变化.在东部NPP值相对较高地区,NPP值以减少为主,东北地区、华北东部和黄土高原地区的减少趋势尤为明显;在西部NPP值相对较低地区,NPP以增加趋势为主,青藏高原地区和塔里木盆地的表现尤为突出.随着气候变化的深入,东西部地区这种变化趋势的对比将越发明显.  相似文献   

10.
中国东北地区近50年净生态系统生产力的时空动态   总被引:4,自引:0,他引:4  
李洁  张远东  顾峰雪  黄玫  郭瑞  郝卫平  夏旭 《生态学报》2014,34(6):1490-1502
东北地区处于我国最高纬度地区,是全球气候变化最敏感的区域之一,研究东北地区净生态系统生产力对气候变化的响应,对阐明北半球中高纬度陆地生态系统碳源汇格局具有重要意义。基于CEVSA(Carbon Exchange between Vegetation,Soil and Atomasphere)模型,对1961—2010年东北地区净生态系统生产力NEP的时空格局及变化趋势进行分析,并探讨了气候变化与区域碳源汇的关系。结果表明:(1)1961—2010年,东北地区年NEP总量在-0.094PgC/a—0.117PgC/a之间波动,年平均0.026PgC/a,占全国NEP总量的15%—37%。过去50年东北区域NEP没有明显的线性变化趋势,20世纪80年代碳吸收量最高,20世纪90年代后碳吸收量开始下降。(2)东北地区NEP的空间分布呈现出东部高,西部和中部低,北部高,南部低的空间格局。过去50年来,碳源区向大气释放的碳量在减少,碳汇区从大气吸收的碳也在减少。(3)NEP的年际变化与温度呈负相关(r=-0.343,P0.05),与降水呈显著正相关(r=0.859,P0.01),东北地区NEP和年降水量的变化规律基本一致,即同期上升或达到最高值,温度和降水共同作用导致东北地区NEP的年际变化,而年降水量的变化对NEP年际变化起主要作用。在空间上,东北地区NEP与降水呈极显著正相关(P0.01)的面积占研究区域总面积的91.5%,与温度呈显著负相关(P0.05)的面积占31.6%,降水也是决定NEP空间分布的最主要因子。(4)升温伴随降水增加导致1961—1990年NEP呈增加趋势,而其后升温伴随降水减少则是近20年东北区域碳汇能力减弱的重要原因。  相似文献   

11.
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China's forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10‐km‐resolution gridded historical data sets (tropospheric O3 concentrations, climate variability/change, and other environmental factors such as land‐cover/land‐use change (LCLUC), increasing CO2 and nitrogen deposition), we conducted nine simulation experiments to: (1) investigate the temporo‐spatial patterns of NPP and NCE in China's forest ecosystems from 1961–2005; and (2) quantify the effects of tropospheric O3 pollution alone or in combination with climate variability and other environmental stresses on forests' NPP and NCE. Results China's forests acted as a carbon sink during 1961–2005 as a result of the combined effects of O3, climate, CO2, nitrogen deposition and LCLUC. However, simulated results indicated that elevated O3 caused a 7.7% decrease in national carbon storage, with O3‐induced reductions in NCE (Pg C year?1) ranging from 0.4–43.1% among different forest types. Sensitivity experiments showed that climate change was the dominant factor in controlling changes in temporo‐spatial patterns of annual NPP. The combined negative effects of O3 pollution and climate change on NPP and NCE could be largely offset by the positive fertilization effects of nitrogen deposition and CO2. Main conclusions In the future, tropospheric O3 should be taken into account in order to fully understand the variations of carbon sequestration capacity of forests and assess the vulnerability of forest ecosystems to climate change and air pollution. Reducing air pollution in China is likely to increase the resilience of forests to climate change. This paper offers the first estimate of how prevention of air pollution can help to increase forest productivity and carbon sequestration in China's forested ecosystems.  相似文献   

12.
东北森林净第一性生产力与碳收支对气候变化的响应   总被引:9,自引:0,他引:9  
以东北地区(38.43'N~53.34'N,115.37'E~135.5'E)为研究对象,利用当前气候状况和不同气候情景下的气象数据驱动基于个体生长过程的中国森林生态系统碳收支模型FORCCHN,模拟了气候变化对东北森林生态系统净第一性生产力(NPP)和碳收支(NEP)的影响.结果表明:1981~2002年期间,东北森林NPP总量位于0.27~0.40 pgc·a-1之间,平均值为0.34 pgc·a-1;土壤呼吸总量在0.11~0.27 PgC·a-1,平均为0.19 PgC·a-1;NEP总量位于0.11~0.18 PgC·a-1之间,且近20多年来该区森林起着CO2汇的作用,平均每年吸收0.15 Pg C的CO2;该区森林NPP和NEP对温度升高比对降雨变化的反应更为敏感;综合降雨增加(20%)和气温增加(3℃)的情况,该区各点森林的NPP和NEP增加的幅度最大;温度不变、降水增加(不变)情景下最小.  相似文献   

13.
Zeng H Q  Liu Q J  Feng Z W  Wang X K  Ma Z Q 《农业工程》2008,28(11):5314-5321
In this study, the BIOME-BGC model, a biogeochemical model, was used and validated to estimate GPP (Gross Primary Productivity) and NPP (Net Primary Productivity) of Pinus elliottii forest in red soil hilly region and their responses to inter-annual climate variability during the period of 1993–2004 and climate change scenarios in the future. Results showed that the average total GPP and NPP were 1941 g C m?2a?1 and 695 g C m?2a?1, and GPP and NPP showed an increasing trend during the study period. The precipitation was the key factor controlling the GPP and NPP variation. Scenario analysis showed that doubled CO2 concentration would not benefit for GPP and NPP with less than 1.5% decrease. When CO2 concentration fixed, GPP responded positively to precipitation change only, and temperature increase by 1.5°C with precipitation increase, while NPP responded positively to precipitation change only. When CO2 concentration was doubled and climate was changed, GPP and NPP responded positively to precipitation change, and GPP also responded positively to temperature increase by 1.5°C with precipitation change.  相似文献   

14.
Aims A lack of explicit information on differential controls on net primary productivity (NPP) across regions and ecosystem types is largely responsible for uncertainties in global trajectories of terrestrial carbon balance with changing environment. The objectives of this study were to determine how NPP of different forest types would respond to inter-annual variability of climate and to examine the responses of NPP to future climate change scenarios across contrasting forest types in northern China.Methods We investigated inter-annual variations of NPP in relation to climate variability across three forest types in northern China, including a boreal forest dominated by Larix gmelinii Rupr., and two temperate forests dominated by Pinus tabulaeformis Carr. and Quercus wutaishanica Mayr., respectively, and studied the responses of NPP in these forests to predicted changes in climate for the periods 2011–40, 2041–70 and 2070–100 under carbon emission scenarios A2 and B2 of Intergovernmental Panel on Climate Change. We simulated the responses of NPP to predicted changes in future climate as well as inter-annual variability of the present climate with the Biome-BGC version 4.2 based on site- and species-specific parameters. The modeled forest NPP data were validated against values in literature for similar types of forests and compared with inter-annual growth variations reflected by tree-ring width index (RWI) at the study sites.Important findings Inter-annual variations in modeled NPP during the period 1960–06 were mostly consistent with the temporal patterns in RWI. There were contrasting responses of modeled NPP among the three forest types to inter-annual variability of the present climate as well as to predicted changes in future climate. The modeled NPP was positively related to annual mean air temperature in the L. gmelinii forest (P < 0.001), but negatively in the P. tabulaeformis forest (P = 0.05) and the Q. wutaishanica forest (P = 0.03), while the relationships of modeled NPP with annual precipitation for the three forest types were all positive. Multiple stepwise regression analyses showed that temperature was a more important constraint of NPP than precipitation in the L. gmelinii forest, whereas precipitation appeared to be a prominent factor limiting the growth in P. tabulaeformis and Q. wutaishanica. Model simulations suggest marked, but differential increases in NPP across the three forest types with predicted changes in future climate.  相似文献   

15.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

16.
《植物生态学报》2017,41(9):925
Aims Net primary production (NPP) is the input to terrestrial ecosystem carbon pool. Climate and land use change affect NPP significantly. Shrublands occupy more than 20% of the terrestrial area of China, and their NPP is comparable to those of the forests. Our objective was to estimate China shrubland NPP from 2001 to 2013, and to analyze its variation and response to climate change.Methods We used a Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of six shrubland types in China from 2001 to 2013. Furthermore, we used Theil-Sen slope combined with Mann-kendall test to analyze its spatial variation and a linear regression of one-variable model to analyze its inter- and intra-annual variation. Finally, a multi-factor linear regression model was used to analyze its response to climate change.Important findings We found the annual mean NPP of China shrubland was 281.82 g•m-2•a-1. The subtropical evergreen shrubland has the maximum NPP of 420.47 g•m-2•a-1, while the high cold desert shrubland has the minimum NPP of 52.65 g•m-2•a-1. The countrywide shrublands NPP increased at the rate of 1.23 g•m-2•a-1, the relative change rate was 5.99%. The temperate deciduous shrubland NPP increased the fastest with a speed of 3.05 g•m-2•a-1 and subalpine evergreen shrubland had a decreasing trend with a speed of -0.73 g•m-2•a-1. Moreover, the other four shrublands NPP had a growing trend, only subalpine deciduous shrubland NPP did not change significantly. The response of NPP to climate change of different seasons varies to different shrubland types. In general, the NPP variation was mainly affected by precipitation, and the spring warming also contributed to it. The increase of countrywide shrubland NPP may promote its contribution to the regional ecosystem function.  相似文献   

17.
利用GLOPEM-CEVSA模型模拟并分析了中国东北地区2000-2008年植被净初级生产力(NPP)时空分布格局及其影响因素,并以4个森林生态站点(大兴安岭、老爷岭、凉水和长白山森林生态站)为例研究了东北地区森林NPP季节变化特征及其环境驱动.结果表明:2000-2008年,东北地区植被年均NPP为445 g C·m-2·a-1;整个研究区沿长白山山脉到小兴安岭山脉地区以及三江平原部分地区的NPP最高,沿长白山山脉到小兴安岭山脉西侧的辽河平原、松嫩平原东部、三江平原和大兴安岭地区次之,西部稀疏草原和荒漠地区的NPP最低.东北地区森林生态系统年均NPP最高,其次为灌丛、农田和草地,荒漠最低.森林生态系统中,针阔混交林年均NPP最大(722 g C·m-2·a-1),落叶针叶林年均NPP最小(451 g C·m-2·a-1).研究期间,森林NPP无显著年际变化,其中2007、2008年较往年NPP大幅增加,很可能与该地区期间气温上升有关(较往年偏高1 ℃=~2℃).东北地区森林自北向南生长季开始时间逐渐提前,生长季变长.  相似文献   

18.
中国西部地区植被净初级生产力的时空格局   总被引:20,自引:0,他引:20  
利用基于Monteith光能利用率理论的碳通量估算模型C- FIX,1km分辨率逐旬SPOT/ VEGETATION遥感数据和全球1.5°×1.5°格网化逐日气象数据,估算了2 0 0 2年中国西部地区植被净初级生产力(NPP)。对西部地区植被NPP的空间分布格局、季节变化及不同土地利用类型植被的NPP总量和平均生产力水平进行了初步研究。结果表明:2 0 0 2年我国西部地区植被年NPP总量约为0 .96 Pg C(1Pg=10 1 5g)。西部地区年NPP空间分布基本格局是东南和西北两区域高,然后以东南西北方向为轴心逐渐向内陆中心迅速递减,该分布格局与各区域的水热条件差异和植被类型的地带性分异规律紧密相关。西部地区陆地生态系统NPP具有显著的季相变化规律,这与温度、降水的季节变化以及人为生产活动安排有很高的相关性。西部地区尽管土地面积广阔,由于区域气候和自然条件相对恶劣,导致土地资源可利用率差,生态系统整体生产力水平相对低下,区域内各种土地利用类型植被的生产力水平差异大且空间分布十分不均衡,是我国生态环境相对脆弱的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号