首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Many rich fens are threatened by high nutrient inputs, but the literature is inconsistent with respect to the type of nutrient limitation and the influence of edaphic characteristics.

Methods

We performed experiments with N- and P-fertilization in three endangered rich fen types: floating fen with Scorpidium scorpioides, non-floating fen with Scorpidium cossonii, floodplain fen with Hamatocaulis vernicosus. In addition, K-fertilization was carried out in the floodplain fen.

Results

The floodplain fen showed no response to P-addition, but N- and K-addition led to grass encroachment and decline of moss cover and species richness. In contrast, in the P-limited floating fen with S. scorpioides, P-addition led to increased vascular plant production at the expense of moss cover. Scorpidium scorpioides, however, also declined after N-addition, presumably due to ammonium toxicity. The fen with S. cossonii took an intermediate position, with NP co-limitation. These striking contrasts corresponded with edaphic differences. The N-limited fen showed low Ca:Fe ratios and labile N-concentrations, and high concentrations of plant-available P and Fe-bound P. The P-limited fen showed an opposite pattern with high Ca:Fe ratios and labile N-concentrations, and low P-concentrations.

Conclusions

This implies that edaphic characteristics dictate the nature of nutrient limitation, and explain contrasting effects of N- and P-eutrophication in different fens.  相似文献   

2.
Question: Why is bryophyte succession in eutrophicated fens faster than in natural fens? Location: Mineral‐rich fens in The Netherlands and NW Europe. Methods: Literature review on the ecology of four bryophyte species in various successional types as observed in Dutch fens. Results: Bryophyte succession in eutrophicated fens from the brown moss Calliergonella cuspidata to Sphagnum squarrosum is much faster than in natural fens with species shifts from Scorpidium scorpioides to Sphagnum subnitens. Under P‐poor conditions, the brown moss stage is stabilized as long as mineral‐rich water is supplied. This is because S. scorpioides is tolerant of rainwater, is a strong competitor and can counteract acidification to some extent while S. subnitens is intolerant to groundwater and has low growth rates and low acidification capacity. In contrast, the Sphagnum stage is stable after rapid succession from rich‐fen mosses under P‐rich conditions. Calliergonella cuspidata has suboptimal growth in rainwater, possibly due to ammonium toxicity, while the high growth rates of S. squarrosum in nutrient‐rich and highly acidic groundwater allow early establishment and rapid expansion. Conclusions: If measures to improve fen base status occur in environments of increased nutrient (P) availability, the management may not lead to the desired restoration of brown moss stages, but instead to rapid acidification by S. squarrosum.  相似文献   

3.
Hamatocaulis vernicosus, a rare moss species, was monitored in 33 fens in the Czech Republic for five to six years. Population size, vitality and trends of population development were recorded. Water chemistry, water level fluctuation, vegetation type and cover, as well as mowing regime were assessed and the effect of these potential predictors on the species populations was examined. Populations of H. vernicosus were affected mainly by the density of vascular plants, the species thrived best in habitats with sparse herb and abundant ??brown moss?? cover. Other important factors included water table fluctuation and water concentration of iron. Populations were more vital and prospered better in sites with a stable water table and more iron-rich conditions. Dependence of population parameters on other measured characteristics of water chemistry was not detected.  相似文献   

4.
5.
The ionome and stoichiometry of fen mosses have not yet been studied in extensive data sets despite their potential to explain ecological behaviour of the species and to indicate nutrient limitation or oversupply. We analysed element concentrations (N, P, K, Ca, Mg, and Fe) in apical parts of dominant peat and brown mosses along the complete pH/calcium gradient in fens of three Central European regions (the Western Carpathians, the Bohemian Massif and, marginally, the West-Bohemian mineral springs). We obtained data from 143 localities for 56 species, with the most replicates for calcium-tolerant Sphagnum warnstorfii. Tissue element concentrations were to a great extent determined by species identity, except for magnesium, iron, and potassium (in the potassium-poor region). Water chemistry determined substantially species’ magnesium, potassium (in the potassium-poor region), and partially also calcium concentrations. Calcium and potassium concentrations were generally most predictable by water chemistry, water table depth (WTD), and species identity, while concentrations of nitrogen, phosphorus, and especially iron were least predictable. Principal component analysis across the species showed the same two principal gradients in all regions. One reflected the ratios between iron and the other ions and the other the ratios between calcium + magnesium and other ions, sorting the species from calcicole (Scorpidium cossonii) to acidicole (Sphagnum fallax). Particular species differed strongly with respect to calcium concentration in both the biomass and the water, and median calcium concentration in a species coincided greatly with median concentration in the water. Tissue phosphorus, nitrogen, and potassium also differed significantly among the species, but analogous coincidences with the concentrations in water were not found. The results for iron and magnesium were inconsistent between the regions. Within particular species, correlations between biomass and water element concentrations were either positive or negative, but largely nonsignificant. The rare moss Hamatocaulis vernicosus had higher element concentrations (except for nitrogen) than would be predicted from water chemistry, resembling the pattern of R-strategy plants. In the Western Carpathians, calcium concentrations in S. warnstorfii decreased significantly with WTD, becoming stabilised at around 5 mg/g at WTD >15 cm. The inter-regional differences in species element concentrations were usually explainable by different iron, magnesium, and potassium concentrations in water, with signs of phosphorus immobilisation by iron such as generally higher N:P ratios in the iron- and simultaneously phosphorus-richer region (Bohemian Massif). Because moss chemical composition combines the effects of species identity and various effects of the environment, caution is needed in any meta-analysis.  相似文献   

6.
Relationships among Scorpidium cossonii and Scorpidium scorpioides haplotypes from most of the species’ distribution areas were analyzed based on ITS and rpl16. The haplotype networks were produced by TCS and were rooted by neighbor joining (ITS, recombination present) or maximum parsimony analysis. The haplotype closest to the root of the ITS network and some poorly represented haplotypes close to this have S. cossonii morphology and are arctic to subarctic, suggesting a northern origin of the complex. Additionally, two major lineages evolved from the root haplotype; one with S. cossonii morphology samples and one with all S. scorpioides morphology ones. The basal haplotypes in these major lineages include numerous temperate zone representatives, suggesting that adaptations for relatively warmer environments are present. Among haplotype groups that evolved later, one group in each major lineage is absent from America. rpl16 provides a scenario similar to that revealed by ITS for S. cossonii (no variation in S. scorpioides). Fossil and molecular evidence suggest that ancestral populations of S. cossonii evolved at least almost 4 Myr bp.  相似文献   

7.
The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.  相似文献   

8.
A greenhouse experiment was set up to investigate if infrequently and frequently occurring species respond differently to simulated habitat changes. Two frequently occurring (Bryum pseudotriquetrum and Calliergonella cuspidata) and two infrequently occurring (Hamatocaulis vernicosus and Paludella squarrosa) rich fen bryophytes were grown in mixed culture and subjected to rainwater or groundwater and three levels of N, ammonium nitrate (0, 1 and 3?mg?N?L–1) and P, potassium phosphate (0, 0.05 and 0.1?mg?P/L). All species responded negatively to higher N-levels and three of the four species responded negatively to rainwater and higher P-levels. C. cuspidata had highest relative growth rate (RGR) in all treatments, and the infrequently occurring species had lower RGR and were more negatively affected by high levels of N than the frequently occurring species. A negative effect of rainwater seemed to be caused by higher background levels of N in rainwater compared to groundwater. We found a negative effect of high initial bryophyte density in three of the four species indicating density-dependent inhibition between species. We suggest that maintenance of oligotrophic conditions by recharge of nutrient-poor groundwater is vital for conservation of infrequently as well as frequently occurring rich fen bryophytes.  相似文献   

9.
To understand colonization processes, it is critical to fully assess the role of dispersal in shaping biogeographical patterns at the gene, individual, population, and community levels. We test two alternative hypotheses (H I and H II) for the colonization of disturbed sites by clonal plants, by analyzing intraspecific genetic variation in one and reproductive traits in two typical fen mosses with separate sexes and intermittent spore dispersal, comparing disturbed, early‐succession (limed) fens and late‐successional rich fens. H I suggests initial colonization of disturbed sites by diverse genotypes of which fewer remain in late‐successional fens and an initially balanced sex ratio that develops into a possibly skewed population sex ratio. H II suggests initial colonization by few genotypes and gradual accumulation of additional genotypes and an initially skewed sex ratio that alters into the species‐specific sex ratio, during succession. Under both scenarios, we expect enhanced sexual reproduction in late‐successional fens due to resource gains and decreased intermate distances when clones expand. We show that the intraspecific genetic diversity, assessed by two molecular markers, in Scorpidium cossonii was higher and the genetic variation among sites was smaller in disturbed than late‐successional rich fens. Sex ratio was balanced in Scossonii and Campylium stellatum in disturbed fens and skewed in Cstellatum in late‐successional fens, thus supporting H I. In line with our prediction, sex expression incidence was higher in, and sporophytes were confined to, late‐succession compared to disturbed rich fens. Late‐successional Scossonii sites had more within‐site patches with two or more genotypes, and both species displayed higher sex expression levels in late‐successional than in disturbed sites. We conclude that diverse genotypes and both sexes disperse efficiently to, and successfully colonize new sites, while patterns of genetic variation and sexual reproduction in late‐successional rich fens are gradually shaped by local conditions and interactions over extended time periods.  相似文献   

10.
In the western part of the Carpathian flysch zone, aquifers host several springwater chemistry types. Four vegetation types, distinguished along the poor-rich gradient (tufa-forming and peat forming brown moss fens, moderately rich and poorSphagnum fens), have been compared with respect to the main habitat factors. Water calcium and magnesium concentrations, pH and conductivity as well as the soil organic carbon content were the properties measured that showed the strongest correlation with the main vegetation gradient (the poor-rich gradient). Further, significant differences in iron, sodium, potassium, sulphate and phosphate concentrations were also found between pairs of related vegetation types. The range of calcium concentrations is wide (2–300 mg/l). The calcium concentration in tufa-forming springs is higher than values usually reported from northern and western Europe. Tufa formation is influenced not only by high calcium concentrations, but also by the total chemical composition of springwater and both climatic and topographic conditions. There is a great excess of cations over Cl and SO 4 2− , balanced by HCO 3 and CO 3 2− in springs with the most intense tufa precipitation. Unusually high calcium concentrations combined with high iron concentrations were found in peat-forming brown moss fens. RichSphagnum-fens with calcitolerantSphagnum species are distinctively low in phosphates. The Western Carpathian poor fens dominated bySphagnum flexuosum have water and soil calcium concentrations comparable to those reported from rich fens of some other areas. The springwater of these fens are rich in iron, phosphates and sulphates. The poorest spring fens withSphagnum fallax, S. magellanicum, S. papillosum andS. auriculatum are not only poor in calcium, but also in iron, sodium and potassium.  相似文献   

11.
To assess the natural range in habitat parameters of the once common rich-fen bryophyte Scorpidium scorpioides, water chemistry and vegetation were studied in different regions characteristic of its NW-European distribution area: the Netherlands, Ireland, Denmark and Fennoscandia. Scorpidium scorpioides was found in an environment with circumneutral pH. The variation in solute content and composition was large and nutrient (N and P) concentrations ranged from zero to values indicative of more eutrophic conditions. Six different vegetation types with S. scorpioides were distinguished, resembling Caricion davallianae, Caricion curto-nigrae and Hydrocotylo-Baldellion communities. Type of substrate and solute levels were strongly correlated with the first ordination axis (DCA) and nutrient status and geographic position with the second axis. Habitat and vegetation characteristics in Dutch rich-fens with S. scorpioides indicated that mineral status was higher than in Fennoscandia and Ireland; solute-poor habitats with S. scorpioides have disappeared from the Netherlands. Trophic status was higher in the Netherlands than in Fennoscandia, but in some cases lower than in Ireland. Acidification and eutrophication may have played a role in the decrease of the species in the Netherlands. However, the wide ecological ranges suggest that the decrease of S. scorpioides is not a physiological effect of unsuitable environmental conditions per se.  相似文献   

12.
Canadian wetlands: Environmental gradients and classification   总被引:1,自引:1,他引:0  
S. C. Zoltai  D. H. Vitt 《Plant Ecology》1995,118(1-2):131-137
The Canadian Wetland Classification System is based on manifestations of ecological processes in natural wetland ecosystems. It is hierarchical in structure and designed to allow identification at the broadest levels (class, form, type) by non-experts in different disciplines. The various levels are based on broad physiognomy and hydrology (classes); surface morphology (forms); and vegetation physiognomy (types). For more detailed studies, appropriate characterization and subdivisions can be applied. For ecological studies the wetlands can be further characterized by their chemical environment, each with distinctive indicator species, acidity, alkalinity, and base cation content. For peatlands, both chemical and vegetational differences indicate that the primary division should be acidic, Sphagnum-dominated bogs and poor fens on one hand and circumneutral to alkaline, brown moss-dominated rich fens on the other. Non peat-forming wetlands (marshes, swamps) lack the well developed bryophyte ground layer of the fens and bogs, and are subject to severe seasonal water level fluctuations. The Canadian Wetland Classification System has been successfully used in Arctic, Subarctic, Boreal and Temperate regions of Canada.  相似文献   

13.
《Journal of bryology》2013,35(4):619-620
Abstract

A number of chemical habitat parameters for the species Scorpidium scorpioides, S. cossonii and S. revolvens were investigated in three areas in northern and southern Sweden. S. revolvens occurs in a much narrower range of some parameters, especially pH and conductivity, than the other two species. When pH and conductivity are considered together, S. revolvens and S. cossonii are almost completely mutually exclusive.  相似文献   

14.
ABSTRACT

Introduction

Three Scorpidium species: S. scorpioides, S. cossonii and S. revolvens are often associated with habitats of high conservation value. This is the first attempt to define the chemical niches for these Scorpidium species in Wales (UK) and allows us to compare these with earlier European datasets.  相似文献   

15.
Quaking rich fens dominated by boreal semi-aquatic brown-mosses such as Scorpidium scorpioides and Calliergon trifarium are extremely rare in the Carpathians. These fens harbour endangered species persisting at few localities in the region. However, their phytosociological classification has not been sufficiently solved yet, because they lack Sphagnum species as well as calcicole species characteristic for the Caricion davallianae alliance. A recent pan-European synthesis on fen vegetation suggests that these fens belong to the Stygio-Caricion limosae alliance (boreal rich fen vegetation). The isolated occurrence of this alliance southward of the boreal zone and outside the Alps is rather exceptional and might represent a relict from an early post-glacial period. In this study, we compared phytosociological data for the Stygio-Caricion limosae alliance between Northern Europe and the Carpathians plus adjacent regions (the Bohemian Massif, the Dinaric Alps) using NMDS and cluster analysis. We found that the species composition of brown-moss quaking rich fens in Central and Southeastern Europe corresponds well with that in Northern Europe, confirming their assignment to Stygio-Caricion limosae. We further reconstructed the potential past distribution of the alliance in Czech Republic and Slovakia using available floristic and macrofossil data. Macrofossil data suggest that this vegetation type had been much more common in Central Europe and that today it persists only in ancient fens, showing the long-term stability of environmental conditions. The main causes of its present-day rarity are Middle-Holocene woodland phases in fens and recent water table decreases caused by anthropogenic deterioration of the water regime in the landscape.  相似文献   

16.
The understanding of succession from rich fen to poorer fen types requires knowledge of changes in hydrology, water composition, peat chemistry and peat accumulation in the successional process. Water flow patterns, water levels and water chemistry, mineralisation rates and nutrient concentrations in above-ground vegetation were studied along a extreme-rich fen-moderate-rich fen gradient at Biebrza (Poland). The extreme-rich fen was a temporary groundwater discharge area, while in the moderate-rich fen groundwater flows laterally towards the river. The moderate-rich fen has a rainwater lens in spring and significant lower concentrations of calcium and higher concentrations of phosphate in the surface water. Mineralisation rates for N, P and K were higher in the moderate-rich fen. Phosphorus concentrations in plant material of the moderate-rich fen were higher than in the extreme-rich fen, but concentrations of N and K in plant material did not differ between both fen types. Water level dynamics and macro-remains of superficial peat deposits were similar in both fen types.We concluded that the differences observed in the moderate-rich and the extreme-rich fens were caused by subtile differences in the proportion of water sources at the peat surface (rainwater and calcareous groundwater, respectively). Development of an extreme-rich fen into a moderate-rich fen was ascribed to recent changes in river hydrology possibly associated with a change in management practices. The observed differences in P-availability between the fen types did not result in significantly different biomass. Moreover, biomass production in both fen types was primarily N-limited although P-availability was restricted too in the extreme-rich fen. Aulacomnium palustre, the dominant moss in the moderate-rich fen, might be favoured in competition because of its broad nutrient tolerance and its quick establishment after disturbance. It might outcompete low productive rich fen species which were shown to be N-limited in both fens. We present a conceptual model of successional pathways of rich fen vegetation in the Biebrza region.  相似文献   

17.
Abstract. The wet to moist bryophyte‐dominated vegetation of Sassendalen, Svalbard, was classified into seven communities. These communities were grouped into (1) Cardamino nymanii‐Saxifragion foliolosae marsh; (2) Caricion stantis fen; (3) Luzulion nivalis snowbed – including manured vegetation corresponding to moss tundras. All communities have a basically arctic distribution. Marshes are developed in habitats with a water table above the bryophyte vegetation surface and fens on sites with a water table level high above the permafrost but below the bryophyte surface. Moss tundras normally have no standing water table, but in Sassendalen they have a low water table due to their development on less steep slopes than in their normal habitat near bird cliffs. CCA confirms that the standing water level is the prime differentiating factor between the alliances, while aspect favourability and permafrost depth differentiate between the fen communities and temporary desiccation is important for the Catoscopium nigritum community. Carex subspathacea is a characteristic fen species in the absence of other Carex species dominating elsewhere in the Arctic. Arctic marshes are linked to an extremely cold environment. They have a very low species diversity with a few species dominating; Arctophila fulva, Pseudocalliergon trifarium, Scorpidium scorpioides and Warnstorfia tundrae are character species. Moss tundra as defined here appears to be restricted to Svalbard and, probably, neighbouring Novaya Zemlya. This may be due to the absence of rodents and the high seabird density, which is related to the mild sea currents reaching further to the north here and which implies manuring of surrounding ecosystems. Manuring in a very cold environment produces moss carpets with a thin active layer and accumulation of thick peat layers without a standing water level. In Sassendalen the role of arctic seabirds is replaced by Svalbard reindeer which are nonmigratory and are concentrated to favourable grazing areas where their manuring effect is intense. Their long‐term manuring effect probably explains the occurrence of moss tundras in this weakly rolling landscape where seabird colonies are absent.  相似文献   

18.
Question: Do tissue element concentrations at the individual species level vary along major vegetation gradients in wetlands, and can they indicate environmental conditions? Location: West Carpathians. Methods: Total plant species composition was recorded in plots distributed along a poor to rich gradient within spring fens and along the gradient from fens to wet meadows. Eriophorum angustifolium (Cyperaceae) and three broadleaf dicotyledonous herb species were collected from the vegetation plots. Tissue N, P, K, Ca and Fe concentrations, N:P and N:K ratios of the species were determined. Each variable was correlated with the sample scores along the first two axes of the DCA ordination, which represented the two main vegetation gradients. Results: K and Ca concentrations in a particular species correlated well with the vegetation gradients, thus indicating changes in the element availability to the species. The trends were sometimes contradictory to known patterns at the community level, but the differences could be ecologically interpreted. Contrary to Ca and K, patterns in N, P and Fe concentration appeared to be more species‐specific. E. angustifolium had a lower K and Ca concentration than the broadleaf herbs. Conclusions: Compared to community‐level measurements, element concentrations in individual species correlated less with observed vegetation gradients. Trends found at the species level may indicate changes in ecological conditions affecting the species, although they need not correspond with trends found at the community level. We conclude that the species‐level approach cannot substitute, but can advance, the community‐level approach in searching for mechanisms underlying vegetation gradients within wetlands.  相似文献   

19.
As ploidy level and mating system can affect genetic diversity and differentiation, we conducted population genetic analyses of two closely related mosses, Scorpidium cossonii (Schimp.) Hedenäs, and S. revolvens (Sw. ex Anonymo) Rubers which differ in ploidy level and sexual system. We collected 315 specimens in total from five populations of S. cossonii and four populations of S. revolvens in the Swiss Alps. Ploidy level, genetic diversity within populations, and genetic differentiation between populations and species were estimated using nine microsatellite markers. In each S. cossonii sample, each locus bore only one allele, while in S. revolvens, seven out of the nine loci were fixed or nearly fixed for two alleles per locus per individual. These findings are consistent with a gametophytic haploid S. cossonii and allodiploid S. revolvens. The haploid and dioicous S. cossonii was genetically more diverse than the (allo)diploid and monoicous S. revolvens. Differences in genetic diversity between the two species may be explained by different mating systems, different population sizes, and different population histories. Genetic differentiation among populations of S. cossonii was higher than among those of S. revolvens. The low genetic differentiation among populations of the monoicous species was not unexpected, since monoicous species frequently produce sporophytes, long-distance spore dispersal is more likely and leads to low differentiation.  相似文献   

20.
Abstract. The peatlands of Atlantic Canada are classified in four plant alliances, consisting of 10 plant associations. The four plant alliances comprise the dry bog communities (Kalmio-Cladonion Wells 1981), wet bog communities (Scirpo-Sphagnion Wells 1981), hummock and ridge communities of slope and string fens (Betulo-Sphagnion Wells all. nov.), and poor, intermediate and rich fen plant communities (Scirpo-Myricion Wells 1981). Distribution maps are presented for relevés in each of the 10 associations. Based on species distributions, floristic regions are defined for peatlands in Atlantic Canada. Nutritional characteristics are also described for each plant association. pH and total soil concentrations of calcium, nitrogen and iron proved reliable in separating bog from fen. A boundary between ombrotrophic peatlands and minerotrophic peatlands is suggested, based on a soil pH of 4.0, total soil concentrations of 3.0 mg g?1 Ca, 4.0 mg g?1 Fe, 13.0 mg g?1 N and a Ca/Mg ratio of 2.5. Comparisons between the syntaxa for peatlands in Atlantic Canada and those in Europe are discussed for higher taxa. The possibility of establishing a new order (Chamaedaphno-Scirpetalia Wells ord. nov.) for peatlands in Atlantic Canada is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号