首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The activation of cyclin-dependent protein kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). The R2 protein of rice is very similar to CAKs of animals and fission yeast at the amino acid level but phosphorylation by R2 has not yet been demonstrated. When R2 was overexpressed in a CAK-deficient mutant of budding yeast, it suppressed the temperature sensitivity of the mutation. Immunoprecipitates of rice proteins with the anti-R2 antibody phosphorylated human CDK2, one of the rice CDKs (Cdc2Os1), and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II of Arabidopsis. Mutational analysis indicated that R2 phosphorylated the threonine residue within the T-loop of CDK2 and Cdc2Os1. R2 was found mainly in two protein complexes which had molecular masses of 190 kDa and 70 kDa, respectively, whilst the CDK- and CTD-kinase activities associated with R2 were identified in a complex of 105 kDa. These results indicate that R2 is closely related to CAKs of animals and fission yeast in terms of its phosphorylation activity and, moreover, that this CAK of rice is distinct from a CAK of the dicotyledonous plant Arabidopsis.  相似文献   

4.
Activation of cyclin-dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). Here we isolated an Arabidopsis cDNA (CAK4At) whose predicted product shows a high similarity to vertebrate CDK7/p40(MO15). Northern blot analysis showed that expressions of the four Arabidopsis CAKs (CAK1At-CAK4At) were not dependent on cell division. CAK2At- and CAK4At-immunoprecipitates of Arabidopsis crude extract phosphorylated CDK and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II with different preferences. These results suggest the existence of differential mechanisms in Arabidopsis that control CDK and CTD phosphorylation by multiple CAKs.  相似文献   

5.
A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.  相似文献   

6.
For the full activation of cyclin-dependent kinases (CDKs), not only cyclin binding but also phosphorylation of a threonine (Thr) residue within the T-loop is required. This phosphorylation is catalyzed by CDK-activating kinases (CAKs). In Arabidopsis three D-type CDK genes (CDKD;1-CDKD;3) encode vertebrate-type CAK orthologues, of which CDKD;2 exhibits high phosphorylation activity towards the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Here, we show that CDKD;2 forms a stable complex with cyclin H and is downregulated by the phosphorylation of the ATP-binding site by WEE1 kinase. A knockout mutant of CDKD;3, which has a higher CDK kinase activity, displayed no defect in plant development. Instead, another type of CAK - CDKF;1 - exhibited significant activity towards CDKA;1 in Arabidopsis root protoplasts, and the activity was dependent on the T-loop phosphorylation of CDKF;1. We propose that two distinct types of CAK, namely CDKF;1 and CDKD;2, play a major role in CDK and CTD phosphorylation, respectively, in Arabidopsis.  相似文献   

7.
8.
Fission yeast Csk1 is a CAK-activating kinase (CAKAK).   总被引:12,自引:3,他引:9  
Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK).  相似文献   

9.
10.
11.
《Cell》1994,78(4):713-724
Phosphorylation by the CDK-activating kinase (CAK) is a required step in the activation of cyclin-dependent kinases. We have purified CAK from mammalian cells; the enzyme comprises two major polypeptides of 42 and 37 kDa. Protein sequencing indicates that the 42 kDa subunit is the mammalian homolog of M015, a protein kinase known to be a component of CAK in amphibians and echinoderms. Cloning of a cDNA encoding the 37 kDa subunit identifies it as a novel cyclin (cyclin H). We have reconstituted CAK in vitro with the MO15 catalytic subunit and cyclin H, demonstrating that M015 is a cyclin-dependent kinase (CDK7). Like other CDKs, MO15/CDK7 contains a conserved threonine required for full activity; mutation of this residue severely reduces CAK activity. The CAK holoenzyme activates complexes of CDK2 and CDC2 with various cyclins and also phosphorylates CDK2, but not CDC2, in the absence of cyclin. Thus, CAK is a CDK-cyclin complex implicated in the control of multiple cell cycle transitions.  相似文献   

12.
13.
14.
The cyclin-dependent kinases (CDKs) that drive the eukaryotic cell cycle must be phosphorylated within the activation segment (T-loop) by a CDK-activating kinase (CAK) to achieve full activity. Although a requirement for CDK-activating phosphorylation is conserved throughout eukaryotic evolution, CAK itself has diverged between metazoans and budding yeast, and fission yeast has two CAKs, raising the possibility that additional mammalian enzymes remain to be identified. We report here the characterization of PNQALRE (also known as CCRK or p42), a member of the mammalian CDK family most similar to the cell-cycle effectors Cdk1 and Cdk2 and to the CAK, Cdk7. Although PNQALRE/CCRK was recently proposed to activate Cdk2, we show that the monomeric protein has no intrinsic CAK activity. Depletion of PNQALRE by >80% due to RNA interference (RNAi) impairs cell proliferation, but fails to arrest the cell cycle at a discrete point. Instead, both the fraction of cells with a sub-G1 DNA content and cleavage of poly(ADP-ribose) polymerase (PARP) increase. PNQALRE knockdown did not diminish Cdk2 T-loop phosphorylation in vivo or decrease CAK activity of a cell extract. In contrast, depletion of Cdk7 by RNAi causes a proportional decrease in the ability of an extract to activate recombinant Cdk2. Our data do not support the proposed function of PNQALRE/CCRK in activating CDKs, butinstead reinforce the notion of Cdk7 as the major, and to date the only, CAK in mammalian cells.  相似文献   

15.
The plant cell cycle--15 years on   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro . We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.  相似文献   

18.
19.
20.
Schizosaccharomyces pombe Mop1-Mcs2 is related to mammalian CAK.   总被引:4,自引:2,他引:2       下载免费PDF全文
The cyclin-dependent kinase (CDK)-activating kinase, CAK, from mammals and amphibians consists of MO15/CDK7 and cyclin H, a complex which has been identified also as a RNA polymerase II C-terminal domain (CTD) kinase. While the Schizosaccharomyces pombe cdc2 gene product also requires an activating phosphorylation, the enzyme responsible has not been identified. We have isolated an essential S.pombe gene, mop1, whose product is closely related to MO15 and to Saccharomyces cerevisiae Kin28. The functional similarity of Mop1 and MO15 is reflected in the ability of MO15 to rescue a mop1 null allele. This suggests that Mop1 would be a CDK, and indeed Mop1 associates with a previously characterized cyclin H-related cyclin Mcs2 of S.pombe. Also, Mop1 and Mcs2 can associate with the heterologous partners human cyclin H and MO15, respectively. Moreover, the rescue of a temperature-sensitive mcs2 strain by expression of mop1+ demonstrates a genetic interaction between mop1 and mcs2. In a functional assay, immunoprecipitated Mop1-Mcs2 acts both as an RNA polymerase II CTD kinase and as a CAK. The CAK activity of Mop1-Mcs2 distinguishes it from the related CDK-cyclin pair Kin28-Ccl1 from S.cerevisiae, and supports the notion that Mop1-Mcs2 may represent a homolog of MO15-cyclin H in S.pombe with apparent dual roles as a RNA polymerase CTD kinase and as a CAK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号