首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
HIV-1 protease is an essential enzyme for viral particle maturation and is a target in the fight against HIV-1 infection worldwide. Several natural polymorphisms are also associated with drug resistance. Here, we utilized both pulsed electron double resonance, also called double electron-electron resonance, and NMR 15N relaxation measurements to characterize equilibrium conformational sampling and backbone dynamics of an HIV-1 protease construct containing four specific natural polymorphisms commonly found in subtypes A, F, and CRF_01 A/E. Results show enhanced backbone dynamics, particularly in the flap region, and the persistence of a novel conformational ensemble that we hypothesize is an alternative flap orientation of a curled open state or an asymmetric configuration when interacting with inhibitors.  相似文献   

2.
Raf-1 kinase inhibitor protein (RKIP) plays a pivotal role in modulating multiple signaling networks. Here we report backbone and side chain resonance assignments of uniformly 15N, 13C labeled human RKIP.  相似文献   

3.
TbFKBP12 is a putative peptidyl prolyl cistrans isomerase from Trypanosoma brucei, causative agent of the African trypanosomiasis or sleeping sickness. It interacts with the immunosuppressive drug rapamycin inhibiting the formation of TORC2 complex leading to parasite death by inhibiting cell proliferation through cytokinesis blockade. Moreover, RNAi silencing of TbFKBP12 revealed essential function in both procyclic and bloodstream forms. Both facts make TbFKBP12 an attractive target for ligand development and thus structural data is desirable. In this work we report the NMR resonance assignments for 1H, 15N and 13C nuclei in the backbone and side chains of the TbFKBP12 as basis for further studies of structure, backbone dynamics, interaction mapping and drug screening.  相似文献   

4.
AK1 (Adenylate Kinase 1) plays crucial roles in processes such as cellular phosphotransfer networks, neuronal maturation and regeneration, gating of ABC transporter CFTR, tumor cell metabolism and myocardial energetic homeostasis. Here we report 1H, 15N and 13C backbone and side-chain resonance assignments of the human AK1 protein in apo form. This work lays the essential basis for the further structure determination of hAK1.  相似文献   

5.
The β subunit of the voltage-gated Ca2+ channel (α1, α2δ, and β subunits) is a member of the MAGUK family of proteins and plays an essential role in regulating Ca2+ channel trafficking and gating. It also serves as a central interaction partner for various Ca2+ channel regulatory proteins. We report here the nearly complete 1H, 13C, and 15N backbone resonance assignments of the 37 kDa core SH3-GK domains of the β4 subunit. This is the first report of solution assignments for β subunits, and as such will lay the foundation for future investigations of interaction site mapping, functional dynamics, and protein complex structure determination.  相似文献   

6.
We report the 1H, 13C and 15N backbone chemical shift assignments and secondary structure of the Escherichia coli protein BamC, a 32-kDa protein subunit that forms part of the BAM (Omp85) complex, the β-barrel assembly machinery present in all Gram-negative bacteria and which is essential for viability.  相似文献   

7.
Dengue virus, belongs to Flaviviridae, is an arthropod transmitted virus that threatens millions of people’s lives. As with other flaviviruses, a positive single-stranded 11-kilobases RNA in the dengue virus genome encodes three structural proteins (capsid protein C, membrane protein M, and envelope protein E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The two component protease NS2B–NS3p is essential for viral replication and is believed to be a potential antiviral drug target. Aprotinin, a native inhibitor, is proved to retard the activity of NS2B–NS3p. The backbone assignments of NS2B–NS3p will be essential for determining the high resolution solution structure of NS2B–NS3p and screening new antiviral drugs. Herein, we report the backbone 1H, 15N, 13C resonance assignments of the N terminal fragment of NS2B (4.8 kDa) and NS3p (18.5 kDa) in complex with aprotinin (6.5 kDa) by high resolution NMR.  相似文献   

8.
Protein splicing is a precise post-translational process mediated by inteins. Inteins are intervening proteins that cleave themselves from a precursor protein while joining the flanking sequences. Here we report the 15N, 13C, and 1H chemical shift assignments of the intein from DNA polymerase II of Pyrococcus abyssi (Pab PolII intein), which has been recombinantly overexpressed and isotopically labeled. The NMR assignments of Pab PolII intein are essential for solution structure determination and protein dynamics study.  相似文献   

9.
We report the 1H, 13C and 15N backbone and side chain chemical shift assignments and secondary structure of the Escherichia coli protein BamE, a subunit of the BAM (Omp85) complex, the β-barrel assembly machinery present in all Gram-negative bacteria, mitochondria and chloroplasts and is essential for viability.  相似文献   

10.
11.
CdnL, a 164-residue protein essential for Myxococcus xanthus viability, is a member of a large family of bacterial proteins of unknown structure and function. Here, we report the 1H, 13C and 15N backbone and side chain assignments for the stable C-terminal domain of CdnL identified by limited proteolysis.  相似文献   

12.
CcmG is a periplasmic, membrane-anchored protein widely distributed in a variety of species. In Escherichia coli, the CcmG protein always acts as a weak reductant in the electron transport chain during cytochrome c maturation (Ccm). Here we report 1H, 15N and 13C backbone and side-chain resonance assignments of the reduced CcmG protein (residues 19–185, renumbered as 1–167) from E. coli. This work lays the essential basis for the further structural and functional analysis of reduced CcmG.  相似文献   

13.
Photosystem II (PSII) is a large membrane protein complex that uses light to split water into molecular oxygen, protons, and electrons. Here we report the 1H, 15N and 13C backbone chemical shift assignments for the Psb27 protein of Photosystem II from Synechocystis PCC 6803. These assignments will now provide the basis for the structural analysis of the Psb27 protein.  相似文献   

14.
15.
The 1H, 13C, and 15N backbone resonance assignments have been made for the Src homology 2 (SH2) domain of the human molecular adapter protein Grb14. The assignments, along with the majority of the non-aromatic side-chain 1H and 13C resonances are reported. The SH2 domain has been complexed with a phosphotyrosine-containing peptide (pY766) corresponding to the putative binding site in the fibroblast growth factor receptor (FGFR1). Chemical shift changes upon binding are also reported.  相似文献   

16.
The molecular structures of the binding between human immunodeficiency virus-1 protease (HIV-1PR) and various inhibitors including existing extensive natural products extracts have been investigated for anti-HIV drug development. In this study, the binding of HIV-1PR and a terpenoid from Litchi chinensis extracts (3-oxotrirucalla-7,24-dien-21-oic acid) was investigated in order to clarify the inhibition effectiveness of this compound. Molecular dynamics (MD) simulations of HIV-1PR complex with 3-oxotrirucalla-7,24-dien-21-oic acid were performed including water molecules. The MD simulation results indicated the formation of hydrogen bonds between the oxygen atoms of the inhibitor and the catalytic aspartates, which are commonly found in inhibitors–protease complexes. On the other hand, no hydrogen bonding of this particular inhibitor to the flap region was found. In addition, the radial distribution function of water oxygens around the catalytic carboxylate nitrogens of Asp29 and Asp30 suggests that at least one or two water molecules are in the active site region whereas direct interaction of the inhibitor was found for catalytic carboxylate oxygen of Asp25. The results of this simulation, in comparison with the structures of other HIV-PR inhibitor complexes, could lead to a better understanding of the activity of 3-oxotrirucalla-7,24-dien-21-oic acid.  相似文献   

17.
The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the 1H, 13C, and 15N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.  相似文献   

18.
Human BUBR1 is a 120 kDa protein that plays a central role in the spindle assembly checkpoint (SAC), the evolutionary conserved and self-regulatory system of higher organisms that monitors and repairs defects in chromosome segregation in mitotic cells. BUBR1 is organised into several domains, with an N-terminal region responsible for its localisation into the kinetochore, the multi-component proteinaceous network that assembles onto chromosomes upon mitotic entry. We have expressed and purified uniformly-15N/13C N-terminal BUBR1 and assigned backbone and side-chain resonances bound to an unlabelled peptide from the protein Blinkin, an element essential for recruitment of BUBR1 to the kinetochore. These assignments provide insights on the Blinkin interaction interface and form the basis of the three-dimensional structure determination of a BUBR1-Blinkin complex.  相似文献   

19.
The backbone and side chain resonance assignments of the murine KSR1 CA1 domain have been determined based on triple-resonance experiments using uniformly [13C, 15N]-labeled protein. This assignment is the first step towards the determination of the three-dimensional structure of the unique KSR1 CA1 domain.  相似文献   

20.

Background

HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability.

Results

A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8.

Conclusions

This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号