首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Signal transducing adapter molecule (STAM) forms the endosomal sorting complex required for transport-0 (ESCRT-0) complex with hepatocyte growth factor-regulated substrate (Hrs) to sort the ubiquitinated cargo proteins from the early endosomes to the ESCRT-1 complex. ESCRT-0 complex, STAM and Hrs, contains multiple ubiquitin binding domains, in which STAM has two ubiquitin binding domains, Vps27/Hrs/Stam (VHS) and ubiquitin interacting motif (UIM) at its N-terminus. By the cooperation of the multiple ubiquitin binding domains, the ESCRT-0 complex recognizes poly-ubiquitin, especially Lys63-linked ubiquitin. Here, we report the backbone resonance assignments and the secondary structure of the N-terminal 191 amino acids of the human STAM1 which includes the VHS domain and UIM. The {1H}-15N heteronuclear NOE experiments revealed that an unstructured and flexible loop region connects the VHS domain and UIM. Our work provides the basic information for the further NMR investigation of the interaction between STAM1 and poly-ubiquitin.  相似文献   

2.
Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases which play key roles in cell cycle control and chromatin modifications. To understand the biological role of the kinase and gain insights into its catalytic mechanism, we performed NMR assignments of catalytically active form of VRK1 with 361 amino acids residues. Here, we present the backbone NMR resonance assignments of the kinase.  相似文献   

3.
Lipocalin2 plays an important role in the innate immune system. In this article we report the backbone and side-chain resonance assignments of rat lipocalin2 (rLcn2). These assignments provide a basis for determining the structure and dynamics of rLcn2. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Lysozyme from lambda bacteriophage (λ lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, λ lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of λ lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes λ lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of λ lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the 1H, 13C and 15N backbone resonance assignments for λ lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR.  相似文献   

6.
Norovirus protease cleaves the virus-encoded polyprotein into six mature nonstructural proteins, presenting itself as an essential enzyme for the viral replication as well as an attractive target for the antiviral drug development. A deeper understanding of the structural mechanism of the protease-substrates/inhibitors interactions by means of solution NMR methods would facilitate a rational design of the virus protease inhibitor. We here report the backbone and side-chain resonance assignment of the protease from Norwalk virus, which is the prototype strain of norovirus. The assignment data has been deposited in the BMRB database under the accession number 17523.  相似文献   

7.
To facilitate NMR spectroscopy studies of interactions with various ligands and potential inhibitors, we report the NMR backbone resonance assignments for the 26 kD human enzyme UCH-L3, a member of the ubiquitin C-hydrolase family of ubiquitin-specific cysteine proteases.  相似文献   

8.
Backbone 1H, 13C and 15N resonance assignments are presented for the extracellular domain of tissue factor. Tissue factor is the integral membrane protein that initiates blood coagulation through the formation an enzymatic complex with the plasma serine protease, factor VIIa.  相似文献   

9.
We have assigned 1H, 15N and 13C resonances of the RGS domain from the human RGS14 protein, a multi-domain member of the RGS (Regulators of G-protein signalling) family of proteins, important in the down-regulation of specific G-protein signalling pathways.  相似文献   

10.
Human muscle acylphosphatase (mAcP) is an enzyme with a ferrodoxin-like topology whose primary role is to hydrolyze the carboxyl-phosphate bonds of acylphosphates. The protein has been widely used as a model system for elucidating the molecular determinants of protein folding and misfolding. We present here the full NMR assignments of the backbone and side chains resonances of mAcP complexed with phosphate, thus providing an important resource for future solution-state NMR spectroscopic studies of the structure and dynamics of this protein in the contexts of protein folding and misfolding.  相似文献   

11.
A 25-residue elongation at the N-terminus endows parvulin 17 (Par17) with altered functional properties compared to parvulin 14 (Par14), such as an enhanced influence on microtubule assembly. Therefore the three-dimensional structure of this N-terminal elongation is of particular interest. Here, we report the nearly complete 1H, 13C and 15N chemical shift assignments of Par17. Subsequent chemical shift index analysis indicated that Par17 features a parvulin-type PPIase domain at the C-terminus, analogous to Par14, and an unstructured N-terminus encompassing the first 60 residues. Hence the N-terminus of Par17 apparently adopts a functionally-relevant structure only in presence of the respective interaction partner(s).  相似文献   

12.
One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologous protein interaction with ACP in H. pylori. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific- assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

13.
14.
Filamins are large actin-binding and cross-linking proteins which act as linkers between the cytoskeleton and various signaling proteins. Filamin A (FLNa) is the most abundant of the three filamin isoforms found in humans. FLNa contains an N-terminal actin-binding domain and 24 immunoglobulin-like (Ig) domains. The Ig domains are responsible for the FLNa dimerization and most of the interactions that FLNa has with numerous other proteins. There are several crystal and solution structures from isolated single Ig domains of filamins in the PDB database, but only few from longer constructs. Here, we present nearly complete chemical shift assignments of FLNa tandem Ig domains 16–17 and 18–19. Chemical shift mapping between FLNa tandem Ig domain 16–17 and isolated domain 17 suggests a novel domain–domain interaction mode.  相似文献   

15.
16.
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-dependent activation of retinal guanylyl cyclase that regulates the visual light response. GCAP1 is genetically linked to retinal degenerative diseases. We report backbone NMR chemical shift assignments of Ca2+-saturated GCAP1 (BMRB no. 18026).  相似文献   

17.
The Toll-interacting protein (Tollip) is a negative regulator of the Toll-like receptor (TLR)-mediated inflammation response. Tollip is a modular protein that contains an Nterminal Tom1-binding domain (TBD), a central conserved domain 2 (C2), and a C-terminal coupling of ubiquitin to endoplasmic reticulum degradation (CUE) domain. Here, we report the sequence-specific backbone 1H, 15N, and 13C assignments of the human Tollip CUE domain. The CUE domain was found to be a stable dimer as determined by size-exclusion chromatography and molecular crosslinking studies. Analysis of the backbone chemical shift data indicated that the CUE domain exhibits three helical elements corresponding to 52% of the protein backbone. Circular dichroism spectrum analysis confirmed the helical nature of this domain. Comparison of the location of these helical regions with those reported for yeast CUE domains suggest differences in length for all helical elements. We expect the structural analysis presented here will be the foundation for future studies on the biological significance of the Tollip CUE domain, its molecular interactions, and the mechanisms that modulate its function during the inflammatory response.  相似文献   

18.
19.
The putative translation initiation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. Although this protein may be involved in many important physiological functions, the precise molecular functions of eIF-5A remain to be clarified. To determine the solution structure and the protein interactions of eIF5A with its potential substrates, we performed NMR studies. Here, we report the nearly complete assignment of the eIF5A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号