首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
The N-terminal domain of the c-Myc protein has been reported to be critical for both the transactivation and biological functions of the c-Myc proteins. Through detailed phosphopeptide mapping analyses, we demonstrate that there is a cluster of four regulated and complex phosphorylation events on the N-terminal domain of Myc proteins, including Thr-58, Ser-62, and Ser-71. An apparent enhancement of Ser-62 phosphorylation occurs on v-Myc proteins having a mutation at Thr-58 which has previously been correlated with increased transforming ability. In contrast, phosphorylation of Thr-58 in cells is dependent on a prior phosphorylation of Ser-62. Hierarchical phosphorylation of c-Myc is also observed in vitro with a specific glycogen synthase kinase 3 alpha, unlike the promiscuous phosphorylation observed with other glycogen synthase kinase 3 alpha and 3 beta preparations. Although both p42 mitogen-activated protein kinase and cdc2 kinase specifically phosphorylate Ser-62 in vitro and cellular phosphorylation of Thr-58/Ser-62 is stimulated by mitogens, other in vivo experiments do not support a role for these kinases in the phosphorylation of Myc proteins. Unexpectedly, both the Thr-58 and Ser-62 phosphorylation events, but not other N-terminal phosphorylation events, can occur in the cytoplasm, suggesting that translocation of the c-Myc proteins to the nucleus is not required for phosphorylation at these sites. In addition, there appears to be an unusual block to the phosphorylation of Ser-62 during mitosis. Finally, although the enhanced transforming properties of Myc proteins correlates with the loss of phosphorylation at Thr-58 and an enhancement of Ser-62 phosphorylation, these phosphorylation events do not alter the ability of c-Myc to transactivate through the CACGTG Myc/Max binding site.  相似文献   

16.
17.
18.
c-Myc, the protein product of protooncogene c-myc, functions in cell proliferation, differentiation, and neoplastic disease. In this study, recombinant c-Myc and Max proteins, encompassing DNA binding (basic region) and dimerization (helix-loop-helix/leucine zipper) domain of human origin, were expressed in bacteria as Myc87 and Max85. Myc87 was purified under denatured conditions and was renatured again. The dissociation constant for the protein dimers and for dimer/DNA complexes were not detectable by isothermal titration calorimetry because of the low degree of solubility of Myc87 and Max85. Therefore, we set up equations which were used to determine the dissociation constants from the proportion of protein-DNA complexes. The dimer dissociation constants in TBS were 5.90(+/-0.54)x10(-7)M for Max85/Max85 homodimer, 6.85(+/-0.25)x10(-3)M for Myc87/Myc87 homodimer, and 2.55(+/-0.29)x10(-8)M for Myc87/Max85 heterodimer, and the DNA-binding dissociation constants in TBS were 1.33(+/-0.21)x10(-9)M for Max85/Max85/DNA, 2.27(+/-0.08)x10(-12)M for Myc87/Myc87/DNA, and 4.43(+/-0.37)x10(-10)M for Myc87/Max85/DNA. In addition, we revealed that linoleic acid which is known as an inhibitor for the formation of Max/Max/DNA complex reduced the affinity of Max homodimer for DNA. This result indicates that linoleic acid may bind to the DNA-binding region of Max homodimer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号