首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since islet β-cells express little

-lactate dehydrogenase (LDH) activity, we have examined the effects on these cells of LDH overexpression. In mock-transfected MIN6 β-cells, LDH activity was 38 nmol/min/mg protein, and 30 mM glucose stimulated secretion 10.4-fold. In two MIN6 cell clones stably overexpressing human LDH-A cDNA, insulin secretion was stimulated only 2.7- and 2.1-fold by high glucose. K+-stimulated insulin secretion was unaffected, and leucine stimulation enhanced, by LDH-A overexpression. LDH-A-overexpressing clones displayed unaltered activities of hexokinase, glucokinase, and malate dehydrogenase, slightly elevated plasma membrane lactate transport activity, and lowered insulin content. Low LDH activity would therefore appear important in β-cell glucose sensing.  相似文献   

2.
We have studied the effects of cholinegic agonists on the rates of insulin release and the concentrations of diacylglycerol (DAG) and intracellular free Ca2+ ([Ca2+]i) in the β-cell line MIN6. Insulin secretion was stimulated by glucose, by glibenclamide and by bombesin. In the presence of glucose, both acetylcholine (ACh) and carbachol (CCh) produced a sustained increase in the rate of insulin release which was blocked by EGTA or verapamil. The DAG content of MIN6 β-cells was not affected by glucose. Both CCh and ACh evoked an increase in DAG which was maximal after 5 min and returned to basal after 30 min; EGTA abolished the cholinergic-induced increased in DAG. ACh caused a transient rise in [Ca2+]i which was abolished by omission of Ca2+ or by addition of devapamil. Thus, cholinergic stimulation of β-cell insulin release is associated with changes in both [Ca2+]i and DAG. The latter change persists longer than the former and activation of protein kinase C and sensitization of the secretory process to Ca2+ may underlie the prolonged effects of cholinergic agonists on insulin release. However, a secretory response to CCh was still evident after both [Ca2+]i and DAG had returned to control values suggesting that additional mechanisms may be involved.  相似文献   

3.
In rat HTC cells expressing a large number of human insulin receptors, insulin stimulated phosphatidylinositol-3-kinase (PI-3-kinase) activity. This activity was more effectively immunoprecipitated with anti-phosphotyrosine antibody (alpha-PY) than with anti-insulin receptor antibody (alpha-IR), suggesting that PI-3-kinase was not directly associated with the insulin receptor. alpha-PY immunoprecipitable PI-3 kinase activity, which was regulated by insulin, corresponded to a small pool of the total cellular PI-3-kinase activity. PI-3-kinase was not directly tyrosine phosphorylated by insulin treatment. A comparison of both catalytic activity and content of PI-3-kinase in alpha-PY immunoprecipitates indicated that after insulin treatment PI-3-kinase activity was enhanced by its association with tyrosine phosphorylated proteins. These studies suggest therefore that PI-3-kinase is a non-tyrosine phosphorylated member of the insulin receptor signalling complex.  相似文献   

4.
Metformin improves insulin sensitivity in insulin sensitive tissues such as liver, muscle and fat. However, the functional roles and the underlying mechanism of metformin action in pancreatic β cells remain elusive. Here we show that, under normal growth condition, metformin suppresses MIN6 β cell proliferation and promotes apoptosis via an AMPK-dependent and autophagy-mediated mechanism. On the other hand, metformin protects MIN6 cells against palmitic acid (PA)-induced apoptosis. Our findings indicate that metformin plays a dual role in β cell survival and overdose of this anti-diabetic drug itself may lead to potential β cell toxicity.  相似文献   

5.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

6.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

7.
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y13-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y13 receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y13 plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y13 receptors, contribute to glucolipotoxicity.  相似文献   

8.
目的:探讨胰岛素样生长因子-1(IGF-I)通过磷酯酰肌醇3-激酶/蛋白激酶B(PI-3K/Akt)信号通路对结肠癌细胞株SW480凋亡率的影响及其凋亡抑制蛋白survivin表达水平的变化。方法:培养结肠癌SW480细胞株,实验分成三组:未加IGF-I空白组、IGF-I刺激组、IGF-I+LY294002阻断组,检测阻断剂LY294002是否阻断PI-3K/Akt通路(Western Blot检测三组P-Akt表达情况);Western Blot及免疫荧光观察三组survivin蛋白表达变化;MTT法检测细胞增殖活性,流式细胞术检测细胞凋亡情况。结果:Western blot结果显示LY294002可抑制IGF-I诱导的p-Akt的表达(P〈0.05);阻断IGF-I诱导的PI-3K/Akt通路后MTT显示结肠癌细胞SW480增殖抑制率升高(P〈0.05),流式细胞术分析显示凋亡率明显上升(P〈0.05);Western blot及免疫荧光结果显示LY294002可抑制IGF-I诱导的survivin的表达(P〈0.05)。结论:IGF-I可通过PI-3K/Akt通路诱导survivin表达,从而抑制结肠癌细胞SW480的凋亡。  相似文献   

9.
Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr595–596 are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion.  相似文献   

10.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

11.
Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP) MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS). HP MIN6 cells had no first phase and impaired second phase GSIS indicative of global functional impairment. This was coupled with a markedly reduced ATP content at basal and glucose stimulated states. Glucose uptake and oxidation were higher at basal glucose but ATP content failed to increase with glucose. HP MIN6 cells had decreased basal lipid oxidation. This was accompanied by reduced expressions of Glut1, Gck, Pfk, Srebp1c, Ucp2, Sirt3, Nampt. MIN6 cells represent an important model of beta cells which, as passage numbers increased lost first phase but retained partial second phase GSIS, similar to patients early in type 2 diabetes onset. We believe a number of gene expression changes occurred to produce this defect, with emphasis on Sirt3 and Nampt, two genes that have been implicated in maintenance of glucose homeostasis.  相似文献   

12.
In a previous report we described the properties of a rabbit anti-insulin receptor antibody (RAIR-IgG) and its effects on the autophosphorylation and kinase activity of human insulin receptors. The present study was carried out on the hepatoma cell line Fao. We tested the mimetic effects of RAIR-IgG on different biological parameters known to be stimulated by insulin, receptor autophosphorylation and kinase activity. RAIR-IgG stimulated the metabolic effects (glucose and amino acid transport) but, unlike insulin, was unable to promote cell proliferation. These data clearly demonstrated the existence of two distinctly controlled pathways in the mediation of the hormonal response. When we investigated the effects of this antibody at the molecular level we found that in a cell-free system RAIR-IgG weakly stimulated receptor autophosphorylation on non-regulatory sites and failed to stimulate tyrosine kinase activity toward exogenous substrates. Accordingly, RAIR-IgG did not stimulate receptor autophosphorylation in 32P-labelled intact cells. Interestingly, under similar conditions RAIR-IgG elicited ribosomal S6 protein phosphorylation, as did insulin. The possibility that RAIR-IgG activated a cryptic tyrosine kinase activity is discussed.  相似文献   

13.
Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic islet β cells is important for understanding and treating diabetes. MIN6 cells, a transformed β-cell line derived from a mouse insulinoma, retain GSIS and are a popular in vitro model for insulin secretion. However, in long-term culture, MIN6 cells'' GSIS capacity is lost. We previously isolated a subclone, MIN6 clone 4, from the parental MIN6 cells, that shows well-regulated insulin secretion in response to glucose, glybenclamide, and KCl, even after prolonged culture. To investigate the molecular mechanisms responsible for preserving GSIS in this subclone, we compared four groups of MIN6 cells: Pr-LP (parental MIN6, low passage number), Pr-HP (parental MIN6, high passage number), C4-LP (MIN6 clone 4, low passage number), and C4-HP (MIN6 clone 4, high passage number). Based on their capacity for GSIS, we designated the Pr-LP, C4-LP, and C4-HP cells as “responder cells.” In a DNA microarray analysis, we identified a group of genes with high expression in responder cells (“responder genes”), but extremely low expression in the Pr-HP cells. Another group of genes (“non-responder genes”) was expressed at high levels in the Pr-HP cells, but at extremely low levels in the responder cells. Some of the responder genes were involved in secretory machinery or glucose metabolism, including Chrebp, Scgn, and Syt7. Among the non-responder genes were Car2, Maf, and Gcg, which are not normally expressed in islet β cells. Interestingly, we found a disproportionate number of known imprinted genes among the responder genes. Our findings suggest that the global expression profiling of GSIS-competent and GSIS-incompetent MIN6 cells will help delineate the gene regulatory networks for insulin secretion.  相似文献   

14.
Interleukin (IL)-17A, a proinflammatory cytokine produced by T-helper (Th)17 cells, has been associated with autoimmune diseases. Type 1 diabetes (T1D) is caused either due to mutation of insulin gene or developed as an autoimmune disease. Studies have shown that IL-17A expression is upregulated in the pancreas in T1D patients and animal models. However, role or importance of IL-17A in T1D pathogenesis needs elucidation. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells through activating IL-17 receptor A (IL-17RA) is lacking. Ins2Akita (Akita) mouse, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis, was crossed with IL-17A-knockout mouse and male IL-17A-deficient Akita mice were used. Streptozotocin, a pancreatic β-cell-specific cytotoxin, was employed to induce a diabetic model in MIN6 cells, a mouse insulinoma cell line. IL-17A expression in the pancreas was upregulated in both Akita and streptozotocin-induced diabetic mice. IL-17A-knockout Akita mice manifested reduced blood glucose concentration and raised serum insulin level. IL-17A deficiency also decreased production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, IL-1β, and interferon (IFN)-γ in Akita mice. IL-17RA expression in MIN6 cells was upregulated by IL-17A. IL-17A enhanced expression of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) and further increased streptozotocin-induced expression of the inflammatory factors in MIN6 cells. IL-17A exacerbated streptozotocin-induced MIN6 cell apoptosis and insulin secretion impairment. Blocking IL-17RA with anti-IL-17RA-neutralizing antibody reduced all these deleterious effects of IL-17A on MIN6 cells. Collectively, IL-17A deficiency alleviated hyperglycemia, hypoinsulinemia, and inflammatory response in Akita mice that are characteristic for T1D. IL-17A exerted an alone and synergistic destruction with streptozotocin to pancreatic β cells through IL-17RA pathway. Thus, the data suggest that targeting IL-17A and/or IL-17RA is likely to preserve remaining β-cell function and treat T1D.Impact statementThe participation of interleukin (IL)-17A in diabetic pathogenesis is suggested in animal models of autoimmune diabetes and in patients with type 1 diabetes (T1D), but with some contradictory results. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells is lacking. We showed that IL-17A deficiency alleviated diabetic signs including hyperglycemia, hypoinsulinemia, and inflammatory response in Ins2Akita (Akita) mice, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis. IL-17A enhanced inflammatory reaction, oxidative stress, and cell apoptosis but attenuated insulin level in mouse insulin-producing MIN6 cells. IL-17A had also a synergistic destruction to MIN6 cells with streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin. Blocking IL-17 receptor A (IL-17RA) reduced all these deleterious effects of IL-17A on MIN6 cells. The results demonstrate the role and the importance of IL-17A in T1D pathogenesis and suggest a potential therapeutic strategy for T1D targeting IL-17A and/or IL-17RA.  相似文献   

15.
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0–28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio.  相似文献   

16.

Background

Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling.

Principal Findings

GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (∼75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate.

Conclusions

Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.  相似文献   

17.
Kim HM  Shin DR  Yoo OJ  Lee H  Lee JO 《FEBS letters》2003,540(1-3):65-70
This study provides evidence that treatment with preclustered ephrin A5-Fc results in a substantial increase in the stability of the p110γ PI-3 kinase associated with EphA8, thereby enhancing PI-3 kinase activity and cell migration on a fibronectin substrate. In contrast, co-expression of a lipid kinase-inactive p110γ mutant together with EphA8 inhibits ligand-stimulated PI-3 kinase activity and cell migration on a fibronectin substrate, suggesting that the mutant has a dominant negative effect against the endogenous p110γ PI-3 kinase. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results demonstrate that the stimulation of cell migration on a fibronectin substrate by the EphA8 receptor depends on the p110γ PI-3 kinase but is independent of a tyrosine kinase activity.  相似文献   

18.
The TRH secretory responsiveness of the pancreatic islet cell clusters from newborn rat in organ culture was studied. Basal TRH secretion was stable over a 9-day period. The response to various secretagogues was tested on day 4. TRH secretion was stimulated by high potassium-induced depolarization and also through both cAMP and protein kinase-C dependent pathways. Like insulin, TRH release was stimulated by glucose and arginine and inhibited by somatostatin. These data suggest the existence of a common mechanism for TRH and insulin secretion by the pancreatic β-cells.  相似文献   

19.
This study investigated the effect of extracellular annexin I on regulating insulin secretion in MIN6N8a (an insulin secreting cell line) cells. The properties of annexin I receptor in MIN6N8a cells were also determined. Annexin I stimulated insulin release in MIN6N8a cells, regardless of the presence or absence of extracellular Ca(2+). Confocal microscopy revealed that annexin I bound to the surface of MIN6N8a cells. In addition, FACs analysis showed that annexin I bound to the surface of MIN6N8a cells in a dose-dependent manner. However, the annexin I-stimulated insulin secretion and the annexin I binding were abolished in MIN6N8a cells treated with proteases. Annexin I receptors were regenerated time-dependently. Furthermore, annexin I-stimulated insulin secretion was inhibited by cycloheximide but not by actinomycin D. These results showed that annexin I binds to the surface receptor in order to regulate the stimulation of insulin release in MIN6N8a cells.  相似文献   

20.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号