共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product. 相似文献
3.
4.
Nakata M Okada T Ozawa K Yada T 《Biochemical and biophysical research communications》2007,353(4):1046-1051
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion. 相似文献
5.
We have studied the effects of cholinegic agonists on the rates of insulin release and the concentrations of diacylglycerol (DAG) and intracellular free Ca2+ ([Ca2+]i) in the β-cell line MIN6. Insulin secretion was stimulated by glucose, by glibenclamide and by bombesin. In the presence of glucose, both acetylcholine (ACh) and carbachol (CCh) produced a sustained increase in the rate of insulin release which was blocked by EGTA or verapamil. The DAG content of MIN6 β-cells was not affected by glucose. Both CCh and ACh evoked an increase in DAG which was maximal after 5 min and returned to basal after 30 min; EGTA abolished the cholinergic-induced increased in DAG. ACh caused a transient rise in [Ca2+]i which was abolished by omission of Ca2+ or by addition of devapamil. Thus, cholinergic stimulation of β-cell insulin release is associated with changes in both [Ca2+]i and DAG. The latter change persists longer than the former and activation of protein kinase C and sensitization of the secretory process to Ca2+ may underlie the prolonged effects of cholinergic agonists on insulin release. However, a secretory response to CCh was still evident after both [Ca2+]i and DAG had returned to control values suggesting that additional mechanisms may be involved. 相似文献
6.
Watanabe R Shen ZP Tsuda K Yamada Y 《Biochemical and biophysical research communications》2008,377(3):867-872
Activins regulate pancreatic development, differentiation and insulin secretion. Activin receptor-like kinase 7 (ALK7) has been identified as a receptor for Nodal and Activin AB and B, and is expressed in pancreatic islets and β-cell lines. In this study, human insulin promoter was activated by Smad2, Smad3 and the pancreatic and duodenal homeobox factor-1 (PDX-1) in the ALK7 pathway. A conserved Smad binding element was related to the promoter activation. Phosphorylated Smad2/Smad3 and PDX-1 were bound to insulin gene with Nodal and Activin AB, and the phosphorylated Smad2/Smad3 interacted with PDX-1. These results indicate that one of the direct target genes of Nodal and Activin AB signals is the insulin gene in pancreatic β-cells and that PDX-1 is directly involved in the ALK7-Smad pathway. 相似文献
7.
8.
This study provides evidence that treatment with preclustered ephrin A5-Fc results in a substantial increase in the stability of the p110γ PI-3 kinase associated with EphA8, thereby enhancing PI-3 kinase activity and cell migration on a fibronectin substrate. In contrast, co-expression of a lipid kinase-inactive p110γ mutant together with EphA8 inhibits ligand-stimulated PI-3 kinase activity and cell migration on a fibronectin substrate, suggesting that the mutant has a dominant negative effect against the endogenous p110γ PI-3 kinase. Significantly, the tyrosine kinase activity of EphA8 is not important for either of these processes. Taken together, our results demonstrate that the stimulation of cell migration on a fibronectin substrate by the EphA8 receptor depends on the p110γ PI-3 kinase but is independent of a tyrosine kinase activity. 相似文献
9.
A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells 总被引:1,自引:0,他引:1
Wellershaus K Degen J Deuchars J Theis M Charollais A Caille D Gauthier B Janssen-Bienhold U Sonntag S Herrera P Meda P Willecke K 《Experimental cell research》2008,314(5):997-1012
10.
Thodeti CK Fröhlich C Nielsen CK Holck P Sundberg C Kveiborg M Mahalingam Y Albrechtsen R Couchman JR Wewer UM 《Experimental cell research》2005,309(2):195-450
ADAMs (a disintegrin and metalloprotease) comprise a family of cell surface proteins with protease and cell-binding activities. Using different forms and fragments of ADAM12 as substrates in cell adhesion and spreading assays, we demonstrated that alpha9beta1 integrin is the main receptor for ADAM12. However, when alpha9beta1 integrin is not expressed--as in many carcinoma cells--other members of the beta1 integrin family can replace its ligand binding activity. In attachment assays, the recombinant disintegrin domain of ADAM12 only supported alpha9 integrin-dependent tumor cell attachment, whereas full-length ADAM12 supported attachment via alpha9 integrin and other integrin receptors. Cells that attached to full-length ADAM12 in an alpha9 integrin-dependent manner also attached to ADAM12 in which the putative alpha9beta1 integrin-binding motif in the disintegrin domain had been mutated. This attachment was mediated through use of an alternate beta1 integrin. We also found that cell spreading in response to ADAM12 is dependent on the apparent level of integrin activation. Binding of cells to ADAM12 via the alpha9beta1 integrin was Mn(2+)-independent and resulted in attachment of cells with a rounded morphology; attachment of cells with a spread morphology required further activation of the alpha9beta1 integrin. We demonstrated that phosphoinositide-3-kinase appears to be central in regulating alpha9beta1 integrin cell spreading activity in response to ADAM12. 相似文献
11.
12.
The effects of forskolin on electrical coupling among pancreatic β-cells were studied. Two microelectrodes were used to measure membrane potentials simultaneously in pairs of islet β-cells. Intracellular injection of a current pulse (ΔI) elicited a membrane response ΔV1 in the injected cell and also a response ΔV2 in a nearby β-cell confirming the existence of cell-to-cell electrical coupling among islet β-cells. In the presence of glucose (7 mM), application of forskolin evoked a transient depolarization of the membrane and electrical activity suggesting that the drug induced a partial inhibition of the β-cell membrane K+ conductance. Concomitant with this depolarization of the membrane there was a marked decrease in β-cell input resistance (ΔV2/ΔI) suggesting that exposure to forskolin enhanced intercellular coupling. Direct measurements of the coupling ratio ΔV2/ΔV1 provided further support to the idea that forskolin enhances electrical coupling among islet cells. Indeed, application of forskolin reversibly increased the coupling ratio. These results suggest that cAMP might be involved in the modulation of electrical coupling among islet β-cells. 相似文献
13.
14.
15.
Woolcott OO Gustafsson AJ Dzabic M Pierro C Tedeschi P Sandgren J Bari MR Nguyen KH Bianchi M Rakonjac M Rådmark O Ostenson CG Islam MS 《Cell calcium》2006,39(6):529-537
Pancreatic beta-cells have ryanodine receptors but little is known about their physiological regulation. Previous studies have shown that arachidonic acid releases Ca(2+) from intracellular stores in beta-cells but the identity of the channels involved in the Ca(2+) release has not been elucidated. We studied the mechanism by which arachidonic acid induces Ca(2+) concentration changes in pancreatic beta-cells. Cytosolic free Ca(2+) concentration was measured in fura-2-loaded INS-1E cells and in primary beta-cells from Wistar rats. The increase of cytosolic Ca(2+) concentration induced by arachidonic acid (150microM) was due to both Ca(2+) release from intracellular stores and influx of Ca(2+) from extracellular medium. 5,8,11,14-Eicosatetraynoic acid, a non-metabolizable analogue of arachidonic acid, mimicked the effect of arachidonic acid, indicating that arachidonic acid itself mediated Ca(2+) increase. The Ca(2+) release induced by arachidonic acid was from the endoplasmic reticulum since it was blocked by thapsigargin. 2-Aminoethyl diphenylborinate (50microM), which is known to inhibit 1,4,5-inositol-triphosphate-receptors, did not block Ca(2+) release by arachidonic acid. However, ryanodine (100microM), a blocker of ryanodine receptors, abolished the effect of arachidonic acid on Ca(2+) release in both types of cells. These observations indicate that arachidonic acid is a physiological activator of ryanodine receptors in beta-cells. 相似文献
16.
17.
Ikegami Y Inukai K Awata T Asano T Katayama S 《Biochemical and biophysical research communications》2008,365(3):433-438
Class IA phosphatidylinositol 3-kinase (PI 3-kinase), which is composed of a 110 kDa catalytic subunit and a regulatory subunit, plays a key role in most insulin dependent cellular responses. To date, five mammalian regulatory subunit isoforms have been identified, including two 85 kDa proteins (p85α and p85β), two 55 kDa proteins (p55γ and p55α), and one 50 kDa protein (p50α). In the present study, we overexpressed these recombinant proteins, tagged with green fluorescent proteins (GFP), in CHO-IR cells and investigated intracellular localizations in both the presence and the absence of insulin stimulation. Interestingly, in response to insulin, only p85α and p85β redistributed to isolated foci in the cells, while both were present throughout the cytoplasm in quiescent cells. In contrast, p55s accumulated in the perinuclear region irrespective of insulin stimulation, while p50α behaved similarly to control GFP. Immunofluorescent antibodies against endogenous IRS-1 revealed IRS-1 to be co-localized in the p85 foci in response to insulin. As both insulin receptors and p110α catalytic subunits were absent from these foci on immunofluorescence study, only p85 and IRS-1 were suggested to form a sequestration complex in response to insulin. To determine the domain responsible for IRS-1 complex formation, we prepared and overexpressed the SH3 domain deletion mutant of p85α in CHO-IR cells. This mutant failed to form foci, suggesting the SH3 domain of regulatory subunits to be responsible for formation of the p85-IRS-1 sequestration complex. In conclusion, our study revealed the SH3 domain of PI 3-kinase to play a critical role in intracellular localizations, including formation of foci with IRS-1 in response to insulin. 相似文献
18.
Insulin secretion from pancreatic islet β-cells is a tightly regulated process, under the close control of blood glucose concentrations, and several hormones and neurotransmitters. Defects in glucose-triggered insulin secretion are ultimately responsible for the development of type II diabetes, a condition in which the total β-cell mass is essentially unaltered, but β-cells become progressively “glucose blind” and unable to meet the enhanced demand for insulin resulting for peripheral insulin resistance. At present, the mechanisms by which glucose (and other nutrients including certain amino acids) trigger insulin secretion in healthy individuals are understood only in part. It is clear, however, that the metabolism of nutrients, and the generation of intracellular signalling molecules including the products of mitochondrial metabolism, probably play a central role. Closure of ATP-sensitive K+(KATP) channels in the plasma membrane, cell depolarisation, and influx of intracellular Ca2+, then prompt the “first phase” on insulin release. However, recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in KATP channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion. In this review, I will discuss recent advances in our understanding of each of these signalling processes. 相似文献
19.
Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells 总被引:12,自引:0,他引:12
The cytosolic Ca2+ activity of mouse pancreatic beta-cells was studied with the intracellular fluorescent indicator quin2 . When the extracellular Ca2+ concentration was 1.20 mM, the basal cytosolic Ca2+ activity was 162 +/- 9 nM. Stimulation with 20 mM glucose increased this Ca2+ activity by 40%. In the presence of only 0.20 mM Ca2+ or after the addition of the voltage-dependent Ca2+ -channel blocker D-600, glucose had an opposite and more prompt effect in reducing cytosolic Ca2+ by about 15%. It is concluded that an early result of glucose exposure is a lowering of the cytosolic Ca2+ activity and that this effect tends to be masked by a subsequent increase of the Ca2+ activity due to influx of Ca2+ through the voltage-dependent Ca2+ channels. 相似文献
20.
Naltrexone, an opiate antagonist, was administered to young obese (ob/ob) and lean mice for five weeks. Animals had continuous access to food and received 10 mg/kg SC twice daily with equivalent volumes of saline given to controls. The effects on body weight, and pituitary and plasma levels of β-endorphin-like material were measured. Naltrexone-injected obese animals gained weight more slowly over the first three weeks while the weight gain of lean animals was not affected by naltrexone. Plasma levels of β-endorphin were shown to be significantly higher in untreated ob/ob mice and this difference increased with age (4–20 weeks). With naltrexone treatment, plasma levels in +/? mice rose and exceeded those in ob/ob. Saline treatment appeared to be a stress, and pituitary β-endorphins rose 4–6 fold in ob/ob compared with +/?. While naltrexone reduced the levels in ob/ob pituitary towards normal, no effect on β-endorphin levels in pituitary of lean mice was obtained. In vitro studies of effects of the opiate antagonists, naloxone, on insulin secretion by isolated islets provided additional evidence of resistance of lean mice to naloxone relative to ob/ob. (IRI secretion fell only in naloxone treated ob/ob islets.) These observations support the contention that this form of genetic obesity is characterized by elevated endogenous opiate levels and an increased sensitivity to opiate antagonists such as naltrexone or naloxone. 相似文献