首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domoic acid (DA) is a neuroexcitatory toxin increasingly causing strandings and mortality of marine mammals. The hippocampus of mammalian brains, associated with learning, memory, and spatial navigation, is one of the predominant regions affected by DA exposure. California sea lions stranding from 2003 to 2006 as a result of DA toxicosis were classified as having acute ( n = 12) or chronic neurologic ( n = 22) clinical signs. Chronic neurologic cases were examined by magnetic resonance imaging to determine the extent of brain damage related to DA exposure. Brain damage included hippocampal and parahippocampal atrophy, temporal horn enlargement, and pathological T2 hyperintensity. Posttreatment, animals were fitted with satellite transmitters and their movement and dive behaviors compared with those of a control group. The only significant difference between acute and chronic animals was distance traveled per day. There were, however, significant differences between chronic neurologic cases and controls: chronic neurologic cases dove shallower for shorter durations, traveled further from shore, and spent less time hauled out and more time surface swimming than control animals. There was no relationship between severity of brain damage and behavioral patterns for chronic neurologic cases. Sea lions with chronic neurologic changes had a poor prognosis for survival following release.  相似文献   

2.
Blooms of the toxin‐producing diatom Pseudo‐nitzschia commonly occur in Monterey Bay, California, resulting in sea lion mortality events. The links between strandings of California sea lions suffering from domoic acid (DA) toxicity, toxic cell numbers, and their associated DA concentration in Monterey Bay and in sea lion feces were examined from 2004 to 2007. While Pseudo‐nitzschia toxic cells and DA concentrations were detectable in the water column most of the time, they were often at low levels. A total of 82 California sea lions were found stranded in the Bay between 2004 and 2007 with acute or chronic signs associated with DA poisoning. The highest number with detectable DA in feces occurred in April 2007 and corresponded with the presence of a highly toxic bloom in the Bay. Higher DA levels occurred in feces from sea lions stranding with acute toxicosis and lower concentrations in feces of sea lions exhibiting signs of chronic DA poisoning or not exhibiting any neurologic signs. Results indicated that sea lions are likely exposed to varying levels of DA through their prey throughout the year, often at sublethal doses that may contribute to a continued increase in the development of chronic neurologic sequelae.  相似文献   

3.
Domoic acid (DA) was first detected in shellfish in New Zealand after the implementation of a comprehensive biotoxin monitoring programme for amnesic, paralytic, diarrhetic and neurotoxic shellfish toxins, following a suspected neurotoxic shellfish poisoning (NSP) event in early 1993. Both phytoplankton monitoring and shellfish flesh testing programmes have led to an extensive database which has helped link species of Pseudo-nitzschia to specific DA outbreaks. In 1994, P. pungens and P. turgidula were associated with DA contamination of shellfish, and cultured isolates of these species proved to be toxin producers. During 1996 the use of species-specific ribosomal RNA (rRNA)-targeted oligonucleotide probes and DA immunoassays led to the discovery of toxin production by P. fraudulenta, and showed the nontoxic P. heimii to be a major bloom former. Pseudo-nitzschia delicatissima, P. pseudodelicatissima and P. multiseries, also identified using rRNA-targeted probes, have been linked to DA contamination of New Zealand shellfish; P. australis is the main cause of DA in scallops. The relative amnesic shellfish poisoning (ASP) risk associated with different species, largely determined by DA immunoassays of cultured isolates, is now used by some regulators to refine risk assessments. Species identification is therefore vital so that shellfish growers, and health and industry officials, can make safe and economically sound harvesting decisions. The development and field trialling of DNA probes is proving invaluable in this context.  相似文献   

4.
Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing.  相似文献   

5.
Domoic acid is a neurotoxic metabolite of widely occurring algal blooms that has caused multiple marine animal stranding events. Exposure to high doses of domoic acid, a glutamate agonist, may lead to persistent medial temporal seizures and damage to the hippocampus. California sea lions (Zalophus californianus) are among the most visible and frequent mammalian victims of domoic acid poisoning, but rapid, reliable diagnosis in a clinical setting has proved difficult owing to the fast clearance of the toxin from the blood stream. Here, we show that the behavioural orienting responses of stranded sea lions diagnosed with domoic acid toxicosis habituate more slowly to a series of non-aversive auditory stimuli than do those of sea lions with no apparent neurological deficits. A signal detection analysis based on these habituation measures was able to correctly identify 50 per cent of subjects with domoic acid toxicosis while correctly rejecting approximately 93 per cent of controls, suggesting potential diagnostic merit.  相似文献   

6.
The occurrence of an unusual mortality event involving California sea lions (Zalophus californianus) along the central California coast in May 1998 was recently reported. The potent neurotoxin domoic acid (DA), produced naturally by the diatom Pseudo-nitzschia australis and transmitted to the sea lions via planktivorous northern anchovies (Engraulis mordax), was identified as the probable causative agent. Details of DA analyses for anchovy tissues and sea lion feces are described. Domoic acid levels were estimated in anchovy samples by HPLC-UV, and in sea lion feces using the same method as well as a microplate receptor binding assay, with absolute confirmation by tandem mass spectrometry. The highest DA concentrations in anchovies occurred in the viscera (223 +/- 5 microg DA g(-1)), exceeding values in the body tissues by seven-fold and suggesting minimal bioaccumulation of DA in anchovy tissue. HPLC values for DA in sea lion fecal material (ranging from 152 to 136.5 microg DA g(-1)) required correction for interference from an unidentified compound. Inter-laboratory comparisons of HPLC data showed close quantitative agreement. Fecal DA activity determined using the receptor binding assay corresponded with HPLC values to within a factor of two. Finally, our detection of P. australis frustules, via scanning electron microscopy, in both anchovy viscera and fecal material from sea lions exhibiting seizures provides corroborating evidence that this toxic algal species was involved in this unusual sea lion mortality event.  相似文献   

7.
Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.  相似文献   

8.
从海洋生物中分离出大量结构新颖、生物活性独特的海洋毒素。本文对目前分离得到的海洋毒素进行了总结,包括:河豚毒素、麻痹性贝毒素、腹泻性贝毒素、肝脏毒贝毒素、神经性贝毒素、记忆丧失性贝毒素、西加毒素和其它类型的海洋毒素。海洋毒素不仅可以作为寻找新型防治心血管疾病药物和抗肿瘤药物的先导化合物,还是研究生命科学有用的工具。本文列出了67个重要的海洋毒素的结构并提供70篇参考文献。  相似文献   

9.
Domoic acid toxicosis (DAT) in California sea lions (Zalophus californianus) is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05). Interestingly, 11 apolipoprotein E (ApoE) charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value) and high specificity (92.3% with 85.7% positive predictive value). These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers.  相似文献   

10.
Mercury is a global contaminant of concern for the fetus and the neonate of piscivores. Methylmercury, produced within marine ecosystems, is of particular concern as a readily absorbed neurotoxicant transported across the blood brain barrier and transplacentally. In the North Pacific Ocean, Steller sea lions are broadly distributed apex predators and, as such, integrate complex food webs and the associated exposure and possible adverse effects of toxic and infectious agents. Hair, including lanugo, was examined using regional and age groupings to assess mercury concentrations in young Alaskan Steller sea lions. The highest concentrations of mercury occurred in the youngest animals, likely via in utero exposure. Based on the adverse developmental outcomes of methylmercury toxicity this specific cohort is of concern. Regionally, higher concentrations of mercury were observed in the endangered western population of Steller sea lions and mirrored patterns observed in human biomonitoring studies of Alaskan coastal communities. These data have broader implications with respect to human and ecosystem health as Steller sea lions rely on similar prey species and foraging areas as those targeted by commercial fisheries and subsistence users and are therefore valuable sentinels of marine ecosystem health.  相似文献   

11.
Marine birds have been hypothesized to be underreported victims of harmful algal blooms (HABs). Toxic blooms of Pseudo-nitzschia spp., the primary amnesic toxin producer microalgae, domoic acid (DA) are known to cause massive mortalities of coastal seabirds and marine mammals around the world. However, these fatalities are only detected when birds die nearby the coastline and little is known about possible outbreaks of pelagic seabirds in oceanic areas. Here we aim to understand whether pelagic seabirds are exposed to amnesic shellfish poisoning (ASP) toxins. For this purpose, we tracked pelagic seabirds feeding on small epipelagic fish and squid, reported to be vectors of DA, which are obtained in high productivity zones where intense Pseudo-nitzschia blooms regularly occur. In particular, we tracked Cory’s (Calonectris borealis) and Scopoli’s (C. diomedea) shearwaters breeding in Gran Canaria (Canary Is.) and in Menorca (Balearic Is.) and feeding on the Canary Current region and the Catalonian coast, respectively. We sampled birds for blood at the recovery of the GPS (Global Positioning System) and analyzed it for DA determination by Liquid Chromatography coupled with Tandem Mass Spectrometry (LC–MS/MS). Among the 61 samples analyzed from Gran Canaria, and 87 from Menorca, 31 (50.8%) and 28 (32.2%) from each location presented detectable levels of DA ranging 1.0–10.6 ng mL−1. This work reveals that DA can be detected at variable levels in the blood of ASP-asymptomatic shearwaters and suggests a chronic exposure of shearwaters to DA, highlighting the need for further studies on DA effects. These results are of high relevance due to the vulnerability of these marine birds, which populations are in continuous decline. Since global warming is expected to alter and increase the occurrence of HABs, marine toxins might become an additional stressor for seabirds and exacerbate the already precarious conservation status of many species.  相似文献   

12.
Domoic acid (DA), the neurotoxin produced by diatoms such as Pseudo-nitzschia multiseries is water-soluble and can bioaccumulate, causing mass death of birds and marine mammals worldwide. Humans eating contaminated shellfish most commonly suffer from memory loss but mortalities have been recorded. The fate of particulate and dissolved DA released from the cells or added as standards was studied when incubated with different bacterial abundances, copepod faecal pellets, mussel pseudo-faeces and bottom sediment. Strains of P. multiseries from Canada and Brazil were grown in non-axenic continuous monocultures with different nutrient conditions, or in a follow-up mesocosm experiment. Incubation lasted up to 75 days in the dark under quiescent conditions after the cells had been killed. Release of DA from decaying cells did not depend on bacterial abundance when the bacterial source was cultures of P. multiseries, and the dissolved toxin was stable with bacteria from P. multiseries cultures (at least 20 days with 1× or 4× bacterial concentration), or with a naturally occurring density of bacteria from surface waters of a known P. multiseries bloom area (35 days). However, four-fold concentration of the natural bacterial consortium from the bloom site reduced the onset of DA degradation to 16 days. Thus, this study suggests that when testing toxin degradation by bacteria, it is important to use bacterial consortia from known bloom areas of Pseudo-nitzschia. Copepod faecal pellets did not affect DA degradation, whereas the presence of mussel pseudo-faeces and bottom sediment rapidly removed most of the toxin. We believe that the rapid removal of DA in the two latter treatments was due to higher bacterial abundance and the presence of enzymes from the mussels and/or associated bacteria that are important for the degradation process. The mechanisms underlying the observed effects on DA degradation with mussel pseudo-faeces and sediment require further research, but suggest interesting possibilities as a potential future mitigation technique.  相似文献   

13.
Sera from 145 Steller sea lions (76 adults, three subadults, 37 pups, and 29 fetuses) were tested for neutralizing antibodies to nine marine calicivirus serotypes. Antibodies were found to San Miguel sea lion virus (SMSV) types 1, 5, 6, 7, 8, 10 and 13, and to Tillamook (bovine) calicivirus, but no antibodies were found to the walrus calicivirus. Titers (microtiter neutralization assay) ranged from 1:20 to 1:320, with many positive reactions at the higher dilutions (greater than or equal to 1:80). Antibodies to SMSV's 5 and 10 were most common among animals sampled in Alaskan waters, while antibodies to SMSV-6 were most common among pups from the southern Oregon coast. These data provide evidence that Steller sea lions, like their California sea lion (Zalophus c. californianus Lesson) counterparts, have experienced widespread exposure to multiple serotypes of marine caliciviruses.  相似文献   

14.
The fecal viral flora of California sea lions   总被引:2,自引:0,他引:2  
California sea lions are one of the major marine mammal species along the Pacific coast of North America. Sea lions are susceptible to a wide variety of viruses, some of which can be transmitted to or from terrestrial mammals. Using an unbiased viral metagenomic approach, we surveyed the fecal virome in California sea lions of different ages and health statuses. Averages of 1.6 and 2.5 distinct mammalian viral species were shed by pups and juvenile sea lions, respectively. Previously undescribed mammalian viruses from four RNA virus families (Astroviridae, Picornaviridae, Caliciviridae, and Reoviridae) and one DNA virus family (Parvoviridae) were characterized. The first complete or partial genomes of sapeloviruses, sapoviruses, noroviruses, and bocavirus in marine mammals are reported. Astroviruses and bocaviruses showed the highest prevalence and abundance in California sea lion feces. The diversity of bacteriophages was higher in unweaned sea lion pups than in juveniles and animals in rehabilitation, where the phage community consisted largely of phages related to the family Microviridae. This study increases our understanding of the viral diversity in marine mammals, highlights the high rate of enteric viral infections in these highly social carnivores, and may be used as a baseline viral survey for comparison with samples from California sea lions during unexplained disease outbreaks.  相似文献   

15.
Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts.  相似文献   

16.
The construction of an electrochemical immunosensor coupled to differential pulse voltammetry (DPV) for the detection of domoic acid (DA), a neurotoxic aminoacid responsible for the human syndrome known as "Amnesic Shellfish Poisoning" (ASP), is proposed here. The method involves the use of disposable screen-printed electrodes (SPEs) for the immunosensor development based on a "competitive indirect test". Domoic acid conjugated to bovine serum albumin (BSA-DA) was coated onto the working electrode of the SPE, followed by incubation with sample (or standard toxin) and anti-DA antibody. An anti-goat IgG-alkaline phosphatase (AP) conjugate was used for signal generation. A spectrophotometric enzyme-linked immunosorbent assay (ELISA) was used in a preliminary phase of development, prior to transferring the assay to the SPEs. Results showed a detection limit equal to 5 ng/ml of toxin. The electrochemical system is simple and cost-effective due to the disposable nature of the SPEs, and the analysis time is 150 min, shorter than that for the spectrophotometric method. The suitability of the assay for DA quantification in mussels was also evaluated. Samples were spiked with DA before and after the sample treatment to study the extraction efficiency and the matrix effect, respectively. After treatment, samples were analysed using a 1:250 v/v dilution in PBS-M (phosphate saline buffer pH 7.4 + CH3OH 10%) to minimise the matrix effect and allow for the detection of 20 microg/g of DA in mussel tissue. This represents the maximum acceptable limit defined by the Food and Drug Administration [Compliance Programme 7303.842. Guidance Levels, Table 3, p. 248, http://www.fda.org]. The optimised ELISA systems were then used, in parallel with a conventional HPLC method, to detect and confirm DA in shellfish extract in order to verify the performance of the electrochemical system. Very good recoveries were obtained, demonstrating the suitability of the proposed assay for accurate determination of the DA concentration in mussel samples.  相似文献   

17.
1. The decline of Steller sea lions Eumetopias jubatus in the Gulf of Alaska and Aleutian Islands between the late 1970s and 1990s may have been related to reduced availability of suitable prey. Many studies have shown that pinnipeds and other mammals suffering from nutritional stress typically exhibit reduced body size, reduced productivity, high mortality of pups and juveniles, altered blood chemistry and specific behavioural modifications. 2. Morphometric measurements of Steller sea lions through the 1970s and 1980s in Alaska indicate reduced body size. Reduced numbers of pups born and an apparent increase in juvenile mortality rates also appear to be nutritionally based. Blood chemistry analyses have further shown that Steller sea lions in the Gulf of Alaska and Aleutian Islands area exhibited signs of an acute phase reaction, or immune reaction, in response to unidentified physical and/or environmental stress. Behavioural studies during the 1990s have not noted any changes that are indicative of an overall shortage in the quantity of prey available to lactating female sea lions. 3. The data collected in Alaska are consistent with the hypothesis that Steller sea lions in the declining regions were nutritionally compromised because of the relative quality of prey available to them (chronic nutritional stress), rather than because of the overall quantity of fish per se (acute nutritional stress). This is further supported by captive studies that indicate the overall quality of prey that has been available to Steller sea lions in the declining population could compromise the health of Steller sea lions and hinder their recovery.  相似文献   

18.
Domoic acid (DA), the toxin responsible for amnesic shellfish poisoning (ASP) can accumulate in king scallop Pecten maximus leading to extensive fishery closures. Approximately 59% of the total value of all fish and shellfish landed in the Isle of Man in 2004 comprised king scallop, hence the economy of the Manx marine sector is particularly susceptible to impacts from this biotoxin. Scallop from fishing grounds around the Isle of Man were sampled in October 2003, June 2004 and October 2004 to determine levels of inter-animal and spatial variability in DA concentration and factors that might influence toxin concentration such as scallop size and water depth. Mean DA concentrations in hepatopancreas ranged from 296.3 μg g−1 to below the detection limit, in gonad from 27.8 μg g−1 to below the limit of detection and in adductor muscle from 7.3 μg g−1 to below the limit of detection. High levels of inter-animal variability of DA concentration in hepatopancreas were recorded; CVs ranging from 16.1% to 70.0%. DA concentrations above 20 μg g−1 were recorded in gonads on all three sampling dates. Scallops from fishing grounds on the east of the Isle of Man were significantly less contaminated than those from the west and southwest. A significant positive correlation between DA concentration and shell length was recorded in some sites, but there was no relationship with water depth. The high inter-animal, spatial and seasonal variability in toxin concentration highlighted the importance of understanding field variability for the development of reliable sampling and management protocols.  相似文献   

19.
1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.  相似文献   

20.
Auditory evoked potential (AEP) measurements are useful for describing the variability of hearing among individuals in marine mammal populations, an important consideration in terms of basic biology and the design of noise mitigation criteria. In this study, hearing thresholds were measured for 16 male California sea lions at frequencies ranging from 0.5 to 32 kHz using the auditory steady state‐response (ASSR), a frequency‐specific AEP. Audiograms for most sea lions were grossly similar to previously reported psychophysical data in that hearing sensitivity increased with increasing frequency up to a steep reduction in sensitivity between 16 and 32 kHz. Average thresholds were not different from AEP thresholds previously reported for male and female California sea lions. Two sea lions from the current study exhibited abnormal audiograms: a 26‐yr‐old sea lion had impaired hearing with a high‐frequency hearing limit (HFHL) between 8 and 16 kHz, and an 8‐yr‐old sea lion displayed elevated thresholds across most tested frequencies. The auditory brainstem responses (ABRs) for these two individuals and an additional 26‐yr‐old sea lion were aberrant compared to those of other sea lions. Hearing loss may have fitness implications for sea lions that rely on sound during foraging and reproductive activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号