首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Migration is widespread among animals, but the factors that influence the decision to migrate are poorly understood. Within a single species, populations may be completely migratory, completely sedentary or partially migratory. We use a population model to derive conditions for migration and demonstrate how migratory survival, habitat quality and density dependence on both the breeding and non-breeding grounds influence conditions for migration and the proportion of migrants within a population. Density dependence during the season in which migratory and sedentary individuals use separate sites is necessary for partial migration. High levels of density dependence at the non-shared sites widen the range of survival values within which we predict partial migration, whereas increasing the strength of density dependence at the shared sites narrows the range of survival values within which we predict partial migration. Our results have important implications for predicting how contemporary populations with variable migration strategies may respond to changes in the quality or quantity of habitat.  相似文献   

2.
Despite the fact that migration occurs in a wide variety of taxa worldwide, little is known about the conditions under which migration is expected to evolve from an ancestral resident population. We develop a model that focuses on ecological factors affecting the evolution of migration in a seasonal environment within a genetically explicit framework. We model the evolution of migration for two common types of migration: ‘shared breeding where migrants share a breeding ground with residents and migrate to a separate non-breeding area, versus ‘shared non-breeding’, where migrants share a non-breeding ground with residents and migrate to a separate breeding area. Ecologically, migration is more easily established in the shared-breeding case versus the shared-non-breeding case. Genetically, the additive effect of a migratory allele affects its establishment more in the shared-non-breeding case versus the shared-breeding case, whereas the dominance effect of the allele affects its establishment more in the shared-breeding case versus the shared-non-breeding case. Generally, migratory alleles can invade even when residents are competitively superior to migrants during the shared season. Partial migration occurs when the population is polymorphic for migratory and non-migratory alleles, and is dependent upon which season is shared and the additive and dominance behaviour of the migratory allele.  相似文献   

3.
Bird migration requires high energy expenditure, and long-distance migrants accumulate fat for use as fuel during stopovers throughout their journey. Recent studies have shown that long-distance migratory birds, besides accumulating fat for use as fuel, also show adaptive phenotypic flexibility in several organs during migration. The migratory routes of many songbirds include stretches of sea and desert where fuelling is not possible. Large fuel loads increase flight costs and predation risk, therefore extensive fuelling should occur only immediately prior to crossing inhospitable zones. However, despite their crucial importance for the survival of migratory birds, both strategic refuelling decisions and variation in phenotypic flexibility during migration are not well understood. First-year thrush nightingales (Luscinia luscinia) caught in the early phase of the onset of autumn migration in southeast Sweden and exposed to a magnetic treatment simulating a migratory flight to northern Egypt increased more in fuel load than control birds. By contrast, birds trapped during the late phase of the onset of autumn migration accumulated a high fuel load irrespective of magnetic treatment. Furthermore, early birds increased less in flight-muscle size than birds trapped later in autumn. We suggest that the relative importance of endogenous and environmental factors in individual birds is affected by the time of season and by geographical area. When approaching a barrier, environmental cues may act irrespective of the endogenous time programme.  相似文献   

4.
Many species show migratory behaviour in response to seasonal changes in environmental conditions. A peculiar, yet widespread phenomenon is partial migration, when a single population consists of both migratory and non‐migratory individuals. There are still many open questions regarding the stability and evolutionary significance of such populations. For passerines the inheritance of migratory activity is best described by the threshold model of quantitative genetics. Such a model has not yet been employed in theoretical studies, in which stability of partially migratory populations is usually linked to group differences in survival or reproduction. Here we develop a parsimonious model featuring a conditional genetic threshold for passerine migratory behaviour under which stable partial migration can be observed, and we explore the resulting selection landscape. Our model results show a cline in migratory behaviour across the landscape, from fully migratory populations to fully residential populations, with a fairly wide zone of partially migratory populations, which is stable in both time and space under a wide range of parameter settings. Temporal stability of the zone is linked with the yearly variance in both migration survival and resident winter survival. In contrast to other theoretical studies, we show that density dependence in winter survival is not essential for observing partially migratory populations. In addition, we observe that selection on the genetic threshold value occurs mainly at the borders of the zone of partial migration. This result suggests that fully migratory and fully residential populations in areas far from the zone of partial migration can harbour genetic diversity that allows the appearance of the alternative phenotype under (a wide range of) different conditions.  相似文献   

5.
During the past 20 years, European Sylvia warblers have been used for a model study of the control mechanisms of bird migration and of evolutionary aspects of migratory behavior. Endogenous annual rhythms (‘circannual’ rhythms) and photo-period have proved to be the essential internal and external controlling factors. It is unknown whether this basic system, that also controls migration in other bird species, is currently evolutionarily stable or is instead adapting birds to the present slightly changing environmental conditions. Using the Blackcap, the control of partial migration in a bird species was analyzed. Two-way selective breeding experiments demonstrated a large selection response and high heritability values. These experiments have also indicated that a partially migratory population can become either almost completely migratory, or sedentary, in two to five generations. Hence, genetic influences are very important and presumably dominant over environmental factors in the expression of migratory or sedentary behavior. The large selection response implies a strikingly high evolutionary potential with respect to strong selection pressures. Further, in the Blackcap, migratory orientation behavior (in addition to migratory activity) was immediately transmitted into a F1-generation when a cross-breeding experiment was performed using birds from a migratory and a resident population. The hybrids displayed their migratory activity along an axis that is used by their migratory parents. Finally, a rapidly developing novel migratory habit (new migratory direction to new wintering areas) in the Blackcap is discussed with respect to a positive feedback-mechanism, possibly including a series of advantages leading to above-average fitness.  相似文献   

6.
The question “Which factors govern the timing of migration in birds?” has fascinated researchers for a long time. It was initially assumed that avian migration is triggered by environmental factors, such as ambient temperature and food availability. Later laboratory experiments in various avian species convincingly showed that timing of spring migration is mainly governed by daylength (photoperiod) and is controlled by circannual rhythms. As a result, the concept that environmental factors (air temperature, precipitation, food availability) have no significant impact on timing of spring migration generally took hold. However, in recent decades more and more data has become available showing that the timing of spring migration in many bird species has significantly changed. These data allow the formulation of a novel concept of regulation mechanisms of timing of spring migration which accounts not only for photoperiodic and endogenous control, but also for the already mentioned extrinsic factors. Studies of endocrine control of spring migratory disposition showed that features of endocrine mechanisms governing the onset of spring migration depend on speciesspecific migratory strategies and the stability of environmental conditions in winter quarters and on migratory routes. It is becoming clear precisely which endocrine mechanisms are involved in adjusting migratory behaviour to variation of the local environment. In recent years, progress has also been made in finding genetic mechanisms controlling the timing of spring migration.  相似文献   

7.
The arrival of the rains and the hydrological changes they cause are essential in the reproductive cycle of Neotropical migratory fishes, but their association with the onset of migration is still poorly understood. This study aimed to determine the role played by rainfall, hydrological changes, and the lunar cycle as triggers for migration of Prochilodus costatus (Prochilodontidae) in the upper São Francisco River, Brazil. In total, 132 individuals were fitted with radiotelemetry transmitters over three consecutive spawning seasons. Spawning migration began with the onset of the rains from late September to mid-December. Individuals exhibited a strong preference for initiating migration at the beginning of the rainy season, when river discharge is low, in days with positive changes in water level, and at times of new or waxing moon. The fraction of the population that initiates migration each year appears to be dependent on rainfall, indicating that P. costatus may be a partial migrant. The results show that P. costatus and, possibly, other migratory Neotropical fish, rely on different but interconnected environmental cues to trigger their spawning migration, ensuring that individuals migrate in time to reach their spawning grounds and find appropriate environmental conditions for spawning.  相似文献   

8.
Allison K. Shaw  Simon A. Levin 《Oikos》2011,120(12):1871-1879
Migration is used by a number of species as a strategy for dealing with a seasonally variable environment. In many migratory species, only some individuals migrate within a given season (migrants) while the rest remain in the same location (residents), a phenomenon called ‘partial migration’. Most examples of partial migration considered in the literature (both empirically and theoretically) fall into one of two categories: either species where residents and migrants share a breeding ground and winter apart, or species where residents and migrants share an overwintering ground and breed apart. However, a third form of partial migration can occur when non‐migrating individuals actually forgo reproduction, essentially a special form of low‐frequency reproduction. While this type of partial migration is well documented in many taxa, it is not often included in the partial migration literature, and has not been considered theoretically to date. In this paper we present a model for this partial migration scenario and determine under what conditions an individual should skip a breeding opportunity (resulting in partial migration), and under what conditions individuals should breed every chance they get (resulting in complete migration). In a constant environment, we find that partial migration is expected to occur when the mortality cost of migration is high, and when individuals can greatly increase their fecundity by skipping a year before breeding. In a stochastic environment, we find that an individual should skip migration more frequently with increased risk of a bad year (higher probability and severity), with higher mortality cost of migration, and with lower mortality cost of skipping. We discuss these results in the context of empirical data and existing life history theory.  相似文献   

9.
Dispersal facilitates population health and maintains resilience in species via gene flow. Adult dispersal occurs in some species, is often facultative, and is poorly understood, but has important management implications, particularly with respect to disease spread. Although the role of adult dispersal in spreading disease has been documented, the potential influence of disease on dispersal has received little attention. African buffalo (Syncerus caffer) are wide‐ranging and harbor many pathogens that can affect nearby livestock. Dispersal of adult buffalo has been described, but ecological and social drivers of buffalo dispersal are poorly understood. We investigated drivers of adult buffalo dispersal during a 4‐year longitudinal study at Kruger National Park, South Africa. We monitored the spatial movement of 304 female buffalo in two focal areas using satellite and radio collars, capturing each buffalo every 6 months to assess animal traits and disease status. We used generalized linear mixed models to determine whether likelihood of dispersal for individual female buffalo was influenced by animal traits, herd identity, environmental variables, gastrointestinal parasites, or microparasite infections. The likelihood and drivers of buffalo dispersal varied by herd, area, and year. In the Lower Sabie herd, where resources were abundant, younger individuals were more likely to disperse, with most dispersal occurring in the early wet season and during an unusually dry year, 2009. In the resource‐poor Crocodile Bridge area, buffalo in poor condition were most likely to disperse. Our findings suggest that dispersal of female buffalo is driven by either seasonal (Lower Sabie) or perhaps social (Crocodile Bridge) resource restriction, indicating resource limitation and dispersal decisions are tightly linked for this social ungulate. We found no direct effects of infections on buffalo dispersal, assuaging fears that highly infectious individuals might be more prone to dispersing, which could accelerate the spatial spread of infectious diseases.  相似文献   

10.
Migratory behavior varies extensively between bird taxa, from long distance migration to purely sedentary behavior. Variability in migratory behavior also occurs within taxa, where individuals within some species, or even populations, show mixed strategies. The same variability occurs in seabird species. We examined the migratory behavior of distinct populations of great frigatebirds Fregata minor in three distant oceanographic basins. Great frigatebird populations showed extensive variation in post‐breeding migratory behavior. Birds from Europa Island (Mozambique Channel) made long‐distance migration to numerous distinct roosting sites in the Indian Ocean, New Caledonia birds made shorter distance migrations to roosting sites in the southwestern Pacific Ocean, and Galapagos birds were resident within the archipelago year round. Juvenile birds from Europa Is. and New Caledonia dispersed widely whereas Galapagos juveniles were resident year round. The migratory behavior of Europa Is. and New Caledonia resulted in complete separation of foraging grounds between breeding adults, non‐breeding adults, and juveniles, whereas in the Galapagos the overlap was complete. We suggest that population variability in migratory behavior may have arisen because of different environmental conditions at sea, and also depends on the availability of suitable roosting sites on oceanic islands. The results also highlight the capacity of frigatebirds to remain airborne most of the time even outside the breeding season when they have to molt.  相似文献   

11.
The onset of migration in birds is assumed to be primarily under endogenous control in long-distance migrants. Recently, climate changes appear to have been driving a rapid change in breeding area arrival. However, little is known about the climatic factors affecting migratory birds during the migration cycle, or whether recently reported phenological changes are caused by plastic behavioural responses or evolutionary change. Here, we investigate how environmental conditions in the wintering areas as well as en route towards breeding areas affect timing of migration. Using data from 1984 to 2004 covering the entire migration period every year from observatories located in the Middle East and northern Europe, we show that passage of the Sahara Desert is delayed and correlated with improved conditions in the wintering areas. By contrast, migrants travel more rapidly through Europe, and adjust their breeding area arrival time in response to improved environmental conditions en route. Previous studies have reported opposing results from a different migration route through the Mediterranean region (Italy). We argue that the simplest explanation for different phenological patterns at different latitudes and between migratory routes appears to be phenotypic responses to spatial variability in conditions en route.  相似文献   

12.
Internal factors such as experience (e.g. age) and motivation for breeding, and external ones such as environmental conditions (e.g. meteorology and landscape characteristics) can promote differences in migratory behaviour and routes among seasons, regions and populations. Using satellite telemetry we investigated whether such differences occur and which factors promote them among migrating Eleonora’s falcons breeding in the Mediterranean area (Spain and Croatia) and wintering in Madagascar. We found that during autumn migration no age differences occur when crossing the Sahara desert, but in the remaining African regions, juveniles were more prone than adults to fly at a slower and more tortuous rate, as well as exhibiting longer stop‐overs, particularly in the Sahel region. Such differences might be promoted by a lower foraging and pre‐migratory fattening efficiency in juveniles. During spring, routes were significantly more eastern than during autumn, resulting in a loop migration occurring in all studied populations. This could be accounted by seasonal variation in the distribution of trophic resources. Our results show that Eleonora’s falcons integrate spatially seasonal changing resources on a continental scale throughout their annual cycle, changing their movement patterns in response to internal (age) and external (habitat) factors. This loop migration pattern may prove to be widespread among other Palearctic trans‐continental migratory bird species.  相似文献   

13.
Weather conditions are paramount in shaping birds’ migratory routes, promoting the evolution of behavioural plasticity and allowing for adaptive decisions on when to depart or stop during migration. Here, we describe and analyze the influence of weather conditions in shaping the sea-crossing stage of the pre-breeding journey made by a long-distance migratory bird, the Eleonora’s falcon (Falco eleonorae), tracked by satellite telemetry from the wintering grounds in the Southern Hemisphere to the breeding sites in the Northern Hemisphere. As far as we know, the data presented here are the first report of repeated oceanic journeys of the same individuals in consecutive years. Our results show inter-annual variability in the routes followed by Eleonora’s falcons when crossing the Strait of Mozambique, between Madagascar and eastern continental Africa. Interestingly, our observations illustrate that individuals show high behavioural plasticity and are able to change their migration route from one year to another in response to weather conditions, thus minimising the risk of long ocean crossing by selecting winds blowing towards Africa for departure and changing the routes to avoid low pressure areas en route. Our results suggest that weather conditions can really act as obstacles during migration, and thus, besides ecological barriers, the migratory behaviour of birds could also be shaped by “meteorological barriers”. We briefly discuss orientation mechanisms used for navigation. Since environmental conditions during migration could cause carry-over effects, we consider that forecasting how global changes of weather patterns will shape the behaviour of migratory birds is of the utmost importance.  相似文献   

14.
This paper reviews the factors and mechanisms which result in the development of the metabolic state characteristic of migration with special reference to a palaeotropic migrant the redheaded bunting,Emberiza bruniceps. Changes in climatic conditions and food supply act as proximate triggers of migratory behaviour in partial migrants. Typical migrants like buntings use daylength as a cue but the exact mechanism of how photoperiodic information is translated in terms of migratory events is still not known. Almost entirely the photoperiodic effects have been explained on the basis of the involvement of hypothalamo/hypophyseal system. We feel mechanism(s) other than those acting through neuroendocrine system may be equally important. Furthermore the role of temperature has not been adequately explored so far. Our observations indicate the possibility that redheaded buntings might integrate the information received from photoperiod with environmental temperature (and other factors?) resulting in the development of migratory state. The physiological control of avian migration is much less understood. Majority of papers have centered around the ‘gonadal hypothesis’ of Rowan supporting or contradicting it without providing conclusive evidence. Pituitary prolactin has also been shown to be implicated although the mechanism of action is only speculative. Conclusive evidence for the involvement of thyroid hormones (thyroxine, T4; triiodothyronine, T3) in the physiological timing of migration has been produced attributing independent roles to T4 and T3. It is suggested that seasonal variation in peripheral conversion of T4 to T3 could serve as an effective strategy to render available the required thyroid hormones T4 and/or T3 during different phases of the year thus accounting for the metabolic switch over from T4-dependent moult to T3-dependent migratory fat deposition and zugunruhe and also ensuring preclusion of simultaneous occurrence of these mutually incompatible events. Considering that the number of environmental and physiological factors influence this mechanism and considering that thyroid hormone molecule has been put to a wide range of usage during the course of evolution the mechanism(s) of peripheral conversion of T4-T3 may assume great flexibility and have selective value-especially in migration which is known to have evolved several times in diverse avian families. The attractiveness of this hypothesis lies in the fact that it has potential to explain the both physiological development of the metabolic state of migration and at the same time the physiological timing of migration not only with respect to the cycle of environment but also with respect to other conflicting seasonal events (moult and reproduction).  相似文献   

15.
Landscape permeability is often explored spatially, but may also vary temporally. Landscape permeability, including partial barriers, influences migratory animals that move across the landscape. Partial barriers are common in rivers where barrier passage varies with streamflow. We explore the influence of partial barriers on the spatial and temporal distribution of migration‐linked genotypes of Oncorhynchus mykiss, a salmonid fish with co‐occurring resident and migratory forms, in tributaries to the South Fork Eel River, California, USA, Elder and Fox Creeks. We genotyped >4,000 individuals using RAD‐capture and classified individuals as resident, heterozygous or migratory genotypes using life history‐associated loci. Across four years of study (2014–2017), the permeability of partial barriers varied across dry and wet years. In Elder Creek, the largest waterfall was passable for adults migrating up‐river 4–39 days each year. In this stream, the overall spatial pattern, with fewer migratory genotypes above the waterfall, remained true across dry and wet years (67%–76% of migratory alleles were downstream of the waterfall). We also observed a strong relationship between distance upstream and proportion of migratory alleles. In Fox Creek, the primary barrier is at the mouth, and we found that the migratory allele frequency varied with the annual timing of high flow events. In years when rain events occurred during the peak breeding season, migratory allele frequency was high (60%–68%), but otherwise it was low (30% in two years). We highlight that partial barriers and landscape permeability can be temporally dynamic, and this effect can be observed through changing genotype frequencies in migratory animals.  相似文献   

16.
Francisco Pulido 《Oikos》2011,120(12):1776-1783
Partial migration is a common and widespread phenomenon in animal populations. Even though the ecological causes for the evolution and maintenance of partial migration have been widely discussed, the consequences of the genetics underlying differences in migration patterns have been little acknowledged. Here, I revise current ideas on the genetics of partial migration and identify open questions, focussing on migration in birds. The threshold model of migration describing the inheritance and phenotypic expression of migratory behaviour is strongly supported by experimental results. As a consequence of migration being a threshold trait, high levels of genetic variation can be preserved, even under strong directional selection. This is partly due to strong environmental canalization. This cryptic genetic variation may explain rapid de novo evolution of migratory behaviour in resident populations and the high prevalence of partial migration in animal populations. To date the threshold model of migration has been tested only under laboratory conditions. For obtaining a more realistic representation of migratory behaviour in the wild, the simple threshold model needs to be extended by considering that the threshold of migration or the liability may be modified by environmental effects. This environmental threshold model is valid for both facultative and obligate migration movements, and identifies genetic accommodation as an important process underlying evolutionary change in migration status. Future research should aim at identifying the major environmental variables modifying migration propensity and at determining reaction norms of the threshold and liability across variation in these variables.  相似文献   

17.
Evidence for climate-driven phenological changes is rapidly increasing at all trophic levels. Our current poor knowledge of the detailed control of bird migration from the level of genes and hormonal control to direct physiological and behavioral responses hampers our ability to understand and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations and the dependence of correlations on species-specific migratory strategy. We analyze phenological patterns of the entire spring migration period in 12 Palaearctic passerine species, drawing on long-term data collected at three locations along a longitudinal gradient situated close to their northern European breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets of migratory populations differentially. Species wintering closer to the breeding areas were affected more than were those travelling longer distances and this pattern was strongest for the earliest subsets of the population. Overall, our results suggest that at least early subsets of the population are affected by local conditions and early birds use local conditions to fine-tune the date of their spring arrival while individuals arriving later are driven by other factors than local conditions e.g. endogenous control. Understanding what cues migratory organisms use to arrive at an optimum time is important for increasing our knowledge of fundamental issues like decision making in organisms during migration and is crucial for future protection of migratory organisms.  相似文献   

18.
Migratory animals are comprised of a complex series of interconnected breeding and nonbreeding populations. Because individuals in any given population can arrive from a variety of sites the previous season, predicting how different populations will respond to environmental change can be challenging. In this study, we develop a population model composed of a network of breeding and wintering sites to show how habitat loss affects patterns of connectivity and species abundance. When the costs of migration are evenly distributed, habitat loss at a single site can increase the degree of connectivity (mixing) within the entire network, which then acts to buffer global populations from declines. However, the degree to which populations are buffered depends on where habitat loss occurs within the network: a site that has the potential to receive individuals from multiple populations in the opposite season will lead to smaller declines than a site that is more isolated. In other cases when there are equal costs of migration to two or more sites in the opposite season, habitat loss can result in some populations becoming segregated (disconnected) from the rest of the network. The geographic structure of the network can have a significant influence on relative population sizes of sites in the same season and can also affect the overall degree of mixing in the network, even when sites are of equal intrinsic quality. When a migratory network is widely spaced and migration costs are high, an equivalent habitat loss will lead to a larger decline in global population size than will occur in a network where the overall costs of migration are low. Our model provides an important foundation to test predictions related to habitat loss in real-world migratory networks and demonstrates that migratory networks will likely produce different dynamics from traditional metapopulations. Our results provide strong evidence that estimating population connectivity is a prerequisite for successfully predicting changes in migratory populations.  相似文献   

19.
Migration phenology is largely determined by how animals respond to seasonal changes in environmental conditions. Our perception of the relationship between migratory behavior and environmental cues can vary depending on the spatial scale at which these interactions are measured. Understanding the behavioral mechanisms behind population‐scale movements requires knowledge of how individuals respond to local cues. We show how time‐to‐event models can be used to predict what factors are associated with the timing of an individual's migratory behavior using data from GPS collared polar bears (Ursus maritimus) that move seasonally between sea ice and terrestrial habitats. We found the concentration of sea ice that bears experience at a local level, along with the duration of exposure to these conditions, was most associated with individual migration timing. Our results corroborate studies that assume thresholds of >50% sea ice concentration are necessary for suitable polar bear habitat; however, continued periods (e.g., days to weeks) of exposure to suboptimal ice concentrations during seasonal melting were required before the proportion of bears migrating to land increased substantially. Time‐to‐event models are advantageous for examining individual movement patterns because they account for the idea that animals make decisions based on an accumulation of knowledge from the landscapes they move through and not simply the environment they are exposed to at the time of a decision. Understanding the migration behavior of polar bears moving between terrestrial and marine habitat, at multiple spatiotemporal scales, will be a major aspect of quantifying observed and potential demographic responses to climate‐induced environmental changes.  相似文献   

20.
Facultative, partially migratory animals provide a contemporary window into the evolution of migration, offering rare opportunities to examine the life-history trade-offs associated with migration. For the first time, to our knowledge, we describe the nature of these trade-offs, using a lek-breeding tropical bird, the white-ruffed manakin (Corapipo altera). Previous evidence indicated that weather drives post-breeding migration to lower elevations bringing condition-related benefits. Using elevation-sensitive stable isotope measurements and more than 1200 h of behavioural observations, we show that male manakins which migrate incur costs of diminished social status and matings with females the following breeding season. Because migratory tendency depends on inter-annual variation in weather, physical costs of displays and breeding prospects the following year, migratory decisions are subject to both natural and sexual selection, with the outcome of such decisions linked to changing climatic regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号