首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ice-water interface constitutes an important habitat for polar organisms, characterized by extreme variability in physical and biological properties, which can range over an order of magnitude on decimeter scales. The porous nature of sea ice allows vertical fluid exchange within the ice and across the ice-water interface in much the same way as the sediment-water interface. The present paper reports on experiments examining the effect of irregular undersides of sea ice on the variability of algal biomass, using flume tanks with constant unidirectional flow. Bulges and depressions at the ice-water interface altered the interfacial pore water flux and affected the spatial distribution and abundance of ice-associated algae substantially. Dye tracer experiments demonstrated that interfacial water fluxes around ice bulges are by a factor of 10-100 higher than published indirect estimates based on algal nutrient demands in flat fast ice. Further, underside relief structures migrated downstream, illustrating their dynamic and transient nature. The presence of a relief fostered algal accumulation compared to a flat underside. Algal growth occurred at bulge sites facing the current, while particles accumulated in the wake further downstream. We infer from our experiments that sea ice is not only a source for algae production, but can also serve as sink for organic material from the water column. We propose that local formation and ablation of ice around underside features is an important process which induces high variations in the sea-ice habitat structure and in growth of sympagic organisms, and could partially explain the high natural variability observed in the abundance and colonization patterns of sea-ice organisms.  相似文献   

2.
The T-pilus is a flexuous filamentous appendage that is essential for Agrobacterium tumefaciens virulence. T-pilus subunits are derived from a VirB2-processing reaction that generates cyclized polypeptide subunits. The T-pilus filament has a diameter of 10 nm and contains a lumen approximately 2 nm in diameter. Biogenesis of the T-pilus requires all 11 VirB proteins, but not the VirD4 protein, which is used in conjugal plasmid transfer. VirB4 and VirB11 are two ATPases that may form homohexameric rings within the transport apparatus, which is composed of VirB6-10 proteins.  相似文献   

3.
Summary Cores and brine samples from sea ice of the Weddell Sea were analyzed for nutrients (phosphate, nitrate and silicate), salinity and chlorophyll a during winter. Stratigraphic analyses of the cores were also carried out. Bulk nutrient concentrations in the sea ice fluctuated widely and did not correlate with salinity. Nutrient concentrations in cores were normalized to sea-water salinity to facilitate comparison. They varied between zero and two or three times those measured in the water column. Differentiation into young and old sea ice, however, revealed that nutrient concentrations in the young ice in many cases corresponded to those in surface seawater. In older ice, nutrients showed signs of increase as well as depletion or exhaustion relative to the water column. Differentiation of core sections according to ice textural classes and analyses of brine samples clarified some relationships between nutrients, salinity and algal biomass. Most of the changes in the nutrient concentrations are attributed to an increase in biological activity as the seasons progress. Silicate is expected to become the first nutrient likely to limit growth of diatoms in the ice which is ascribed to slower regeneration or dissolution of this nutrient relative to phosphate and nitrate. A consequence of silicate exhaustion may be the succession of different algal assemblages, from a diatom dominated community to one in which autotrophic flagellates form the largest component.  相似文献   

4.
5.
Summary A novel sampling/incubating device was used to determine the in situ patterns of intracellular photosynthate allocation by algae living in the bottom of annual sea ice in the Canadian arctic. During the seasonal decline of the bloom in late May and June, the average allocation pattern after 24 h incubation in the bottom 1 cm of ice (where the bulk of the algae are found) was 30.5% to low molecular weight materials, 10.6% to lipid, 48.8% to polysaccharide and 8.8% to protein. Allocation patterns were vertically stratified and light-dependent within the bottom ice community, with higher allocation to lipid in the upper, better-illuminated, strata. Chlorophyll-specific photosynthesis rates were extremely low (<0.031 gC·g Chl a –1·h–1). Short incubations (ca. 1h) gave similar results to the 24 h incubations. The in situ allocation patterns were atypical of those normally expected for light-limited microalgae, but were consistent with a physiological response to inorganic nutrient limitation in the late stages of the bloom.  相似文献   

6.
The primary production of bottom ice algae is an important food source for sympagic, pelagic and benthic organisms in the Arctic Ocean as well as Antarctic Ocean. Using 13C-15N isotope tracers, the recent ice algal production at Barrow during the spring season was lower in 2003 than three decades ago, although the maximum chlorophyll-a concentration for the bottom ice algae was similar to the values from previous studies. Estimated recent new and total production rates of the ice algae were 0.8 g C m- 2 yr- 1 and 2.0 g C m- 2 yr- 1 respectively, while the rates of water column phytoplankton were 0.2 g C m- 2 yr- 1 and 0.7 g C m- 2 yr- 1 for the spring sampling period in 2003. The ice algae contributed 74% of the pelagic primary production under the landfast sea ice at Barrow before the phytoplankton spring bloom. At the end of the season in 2003, a high carbon allocation of lipids in the ice algae was found. Three possible explanations- nutrient depletion, increasing light, and/or changes in species composition- were suggested for the high carbon incorporation into lipids. This high lipid synthesis of the bottom ice algae might be significant to zooplankton and benthic fauna grazers because lipids are the most energy dense biomolecules.  相似文献   

7.
Ancient horizontal gene transfer   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
Davison J 《Nature biotechnology》2004,22(11):1349; author reply 1349-1349; author reply 1350
  相似文献   

10.
11.
The role of sea ice in structuring Antarctic ecosystems   总被引:13,自引:5,他引:8  
Summary This paper focusses on the links between growth, persistence and decay of sea ice and the structure of Antarctic marine ecosystems on different spatial and temporal scales. Sea-ice growth may divide an oceanic ecosystem into two dissimilar compartments: (1) the water column, with primary production controlled by the reduction of irradiative fluxes due to the snow-laden sea-ice cover and thermo-haline convection, and (2) the pore space within the ice with incorporated organisms switching from a planktonic to a kryohaline mode of life. In the ice, physical boundary conditions are set by (1) the irradiance which is controlled by the optical properties of snow and ice and (2) the ambient temperature which controls salinity and brine volume. Partly due to the high levels of biomass within the sea-ice system, interaction between different groups of organisms concentrates on the planar environment predefined by the ice cover. As a result of regional structuring of ecosystems, four sea-ice regimes may be recognized: seasonal pack ice, coastal zone, perennial pack ice, and marginal ice zone. These regimes are interwoven through the temporal structuring of ecosystems brought about by ice-cover seasonality and ice drift. In comparison with open-water pelagic ecosystems, sea ice appears of particular importance as it partly inverts the ecosystem structure and enhances the degree of ecological variability.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

12.
In a horizontal gene transfer (HGT) event, a gene is transferred between two species that do not have an ancestor-descendant relationship. Typically, no more than a few genes are horizontally transferred between any two species. However, several studies identified pairs of species between which many different genes were horizontally transferred. Such a pair is said to be linked by a highway of gene sharing. We present a method for inferring such highways. Our method is based on the fact that the evolutionary histories of horizontally transferred genes disagree with the corresponding species phylogeny. Specifically, given a set of gene trees and a trusted rooted species tree, each gene tree is first decomposed into its constituent quartet trees and the quartets that are inconsistent with the species tree are identified. Our method finds a pair of species such that a highway between them explains the largest (normalized) fraction of inconsistent quartets. For a problem on n species and m input quartet trees, we give an efficient O(m + n(2))-time algorithm for detecting highways, which is optimal with respect to the quartets input size. An application of our method to a dataset of 1128 genes from 11 cyanobacterial species, as well as to simulated datasets, illustrates the efficacy of our method.  相似文献   

13.
The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in the Bacillus subtilis chromosome. The SOS response and the RapI-PhrI sensory system activate ICEBs1 gene expression, excision and transfer by inactivating the ICEBs1 repressor protein ImmR. Although ImmR is similar to many characterized phage repressors, we found that, unlike these repressors, inactivation of ImmR requires an ICEBs1-encoded anti-repressor ImmA (YdcM). ImmA was needed for the degradation of ImmR in B. subtilis. Coexpression of ImmA and ImmR in Escherichia coli or co-incubation of purified ImmA and ImmR resulted in site-specific cleavage of ImmR. Homologues of immR and immA are found in many mobile genetic elements. We found that the ImmA homologue encoded by B. subtilis phage phi105 is required for inactivation of the phi105 repressor (an ImmR homologue). ImmA-dependent proteolysis of ImmR repressors may be a conserved mechanism for regulating horizontal gene transfer.  相似文献   

14.
15.
Krylov VN 《Genetika》2003,39(5):595-620
The review considers the involvement of bacteriophages in transferring genes, which determine bacterial pathogenicity, and the increasing role of comparative genomics and genetics of bacteria and bacteriophages in detecting new cases of horizontal gene transfer. Examples of phage participation in this process proved to a different extent are described. Emphasis is placed on the original work carried out in Russia and focused on bacteriophages (temperate transposable phages and giant virulent phi KZ-like phages) of conditional pathogen Pseudomonas aeruginosa. Consideration is given to the possible lines of further research of the role of bacteriophages in the infection process and, in particular, the role of virulent phages, whose products are similar to those of pathogenic bacteria, in modification of clinical signs of infectious diseases and in evolution. An attempt is made to predict the possible direction of pathogen evolution associated with development of new treatment strategies and generation of new specific niches.  相似文献   

16.
A phylogenetic study of the isopenicillin-N-synthetase (IPNS) gene sequence from prokaryotic and lower eukaryotic producers of β-lactam antibiotics by means of a maximum-likelihood approach has been carried out. After performing an extensive search, rather than invoking a global molecular clock, the results obtained are best explained by a model with three rates of evolution. Grouped in decreasing order, these correspond toA. nidulans and then to the rest of the eukaryotes and prokaryotes, respectively. The estimated branching date between prokaryotic and fungal IPNS sequences (852 ±106 MY) strongly supports the hypothesis that the IPNS gene was horizontally transferred from bacterial β-lactam producers to filamentous fungi. Correspondence to: A. Moya  相似文献   

17.
Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea‐ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence‐induction kinetics. Sea‐ice algae exhibited the least photosynthetic stress when maintained in 35‰ and 51‰ salinity, whereas 16, 21, and 65‰ treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea‐ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast‐induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea‐ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing.  相似文献   

18.
19.
20.
Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号