首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundMalaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipitation on malaria mortality in three areas in Western Kenya.ConclusionThis study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions.  相似文献   

2.
ABSTRACT: BACKGROUND: More than 75% of the total area of Ethiopia is malarious, making malaria the leading public health problem in Ethiopia. The aim of this study was to investigate the prevalence rate and the associated socio-economic, geographic and demographic factors of malaria based on the rapid diagnosis test (RDT) survey results. METHODS: From December 2006 to January 2007, a baseline malaria indicator survey in Amhara, Oromiya and Southern Nation Nationalities and People (SNNP) regions of Ethiopia was conducted by The Carter Center. This study uses this data. The method of generalized linear model was used to analyse the data and the response variable was the presence or absence of malaria using the rapid diagnosis test (RDT). RESULTS: The analyses show that the RDT result was significantly associated with age and gender. Other significant covariates confounding variables are source of water, trip to obtain water, toilet facility, total number of rooms, material used for walls, and material used for roofing. The prevalence of malaria for households with clean water found to be less. Malaria rapid diagnosis found to be higher for thatch and stick/mud roof and earth/local dung plaster floor. Moreover, spraying anti-malaria to the house was found to be one means of reducing the risk of malaria. Furthermore, the housing condition, source of water and its distance, gender, and ages in the households were identified in order to have two-way interaction effects. CONCLUSION: Individuals with poor socio-economic conditions are positively associated with malaria infection. Improving the housing condition of the household is one of the means of reducing the risk of malaria. Children and female household members are the most vulnerable to the risk of malaria. Such information is essential to design improved strategic intervention for the reduction of malaria epidemic in Ethiopia.  相似文献   

3.
Kibii Komen 《EcoHealth》2017,14(2):259-271
Malaria cases in South Africa’s Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (?0.02, ?0.01, ?0.02, ?0.00) and temperature (?46.61, ?47.46, ?48.14, ?36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a ‘malaria season’. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.  相似文献   

4.
HW Gao  LP Wang  S Liang  YX Liu  SL Tong  JJ Wang  YP Li  XF Wang  H Yang  JQ Ma  LQ Fang  WC Cao 《PloS one》2012,7(8):e43686
Malaria is re-emerging in Anhui Province, China after a decade long’ low level of endemicity. The number of human cases has increased rapidly since 2000 and reached its peak in 2006. That year, the malaria cases accounted for 54.5% of total cases in mainland China. However, the spatial and temporal patterns of human cases and factors underlying the re-emergence remain unclear. We established a database containing 20 years’ (1990–2009) records of monthly reported malaria cases and meteorological parameters. Spearman correlations were used to assess the crude association between malaria incidence and meteorological variables, and a polynomial distributed lag (PDL) time-series regression was performed to examine contribution of meteorological factors to malaria transmission in three geographic regions (northern, mid and southern Anhui Province), respectively. Then, a two-year (2008–2009) prediction was performed to validate the PDL model that was created by using the data collected from 1990 to 2007. We found that malaria incidence decreased in Anhui Province in 1990s. However, the incidence has dramatically increased in the north since 2000, while the transmission has remained at a relatively low level in the mid and south. Spearman correlation analyses showed that the monthly incidences of malaria were significantly associated with temperature, rainfall, relative humidity, and the multivariate El Niño/Southern Oscillation index with lags of 0–2 months in all three regions. The PDL model revealed that only rainfall with a 1–2 month lag was significantly associated with malaria incidence in all three regions. The model validation showed a high accuracy for the prediction of monthly incidence over a 2-year predictive period. Malaria epidemics showed a high spatial heterogeneity in Anhui Province during the 1990–2009 study periods. The change in rainfall drives the reemergence of malaria in the northern Anhui Province.  相似文献   

5.
ABSTRACT: BACKGROUND: Malaria remains a significant health problem in Bangladesh affecting 13 of 64 districts. The risk of malaria is variable across the endemic areas and throughout the year. A better understanding of the spatial and temporal patterns in malaria risk and the determinants driving the variation are crucial for the appropriate targeting of interventions under the National Malaria Control and Prevention Programme. METHODS: Numbers of Plasmodium falciparum and Plasmodium vivax malaria cases reported by month in 2007, across the 70 endemic thanas (sub-districts) in Bangladesh, were assembled from health centre surveillance reports. Bayesian Poisson regression models of incidence were constructed, with fixed effects for monthly rainfall, maximum temperature and elevation, and random effects for thanas, with a conditional autoregressive prior spatial structure. RESULTS: The annual incidence of reported cases was 34.0 and 9.6 cases/10,000 population for P. falciparum and P. vivax respectively and the population of the 70 malaria-endemic thanas was approximately 13.5 million in 2007. Incidence of reported cases for both types of malaria was highest in the mountainous south-east of the country (the Chittagong Hill Tracts). Models revealed statistically significant positive associations between the incidence of reported P. vivax and P. falciparum cases and rainfall and maximum temperature. CONCLUSIONS: The risk of P. falciparum and P. vivax was spatially variable across the endemic thanas of Bangladesh and also highly seasonal, suggesting that interventions should be targeted and timed according to the risk profile of the endemic areas. Rainfall, temperature and elevation are major factors driving the spatiotemporal patterns of malaria in Bangladesh.  相似文献   

6.
The northern Great Plains (NGP) of the United States has been a hotspot of West Nile virus (WNV) incidence since 2002. Mosquito ecology and the transmission of vector-borne disease are influenced by multiple environmental factors, and climatic variability is an important driver of inter-annual variation in WNV transmission risk. This study applied multiple environmental predictors including land surface temperature (LST), the normalized difference vegetation index (NDVI) and actual evapotranspiration (ETa) derived from Moderate-Resolution Imaging Spectroradiometer (MODIS) products to establish prediction models for WNV risk in the NGP. These environmental metrics are sensitive to seasonal and inter-annual fluctuations in temperature and precipitation, and are hypothesized to influence mosquito population dynamics and WNV transmission. Non-linear generalized additive models (GAMs) were used to evaluate the influences of deviations of cumulative LST, NDVI, and ETa on inter-annual variations of WNV incidence from 2004–2010. The models were sensitive to the timing of spring green up (measured with NDVI), temperature variability in early spring and summer (measured with LST), and moisture availability from late spring through early summer (measured with ETa), highlighting seasonal changes in the influences of climatic fluctuations on WNV transmission. Predictions based on these variables indicated a low WNV risk across the NGP in 2011, which is concordant with the low case reports in this year. Environmental monitoring using remote-sensed data can contribute to surveillance of WNV risk and prediction of future WNV outbreaks in space and time.  相似文献   

7.

Background

Hookworm disease is one of the most common infections and cause of a high disease burden in the tropics and subtropics. Remotely sensed ecological data and model-based geostatistics have been used recently to identify areas in need for hookworm control.

Methodology

Cross-sectional interview data and stool samples from 6,375 participants from nine different sites in Mbeya region, south-western Tanzania, were collected as part of a cohort study. Hookworm infection was assessed by microscopy of duplicate Kato-Katz thick smears from one stool sample from each participant. A geographic information system was used to obtain remotely sensed environmental data such as land surface temperature (LST), vegetation cover, rainfall, and elevation, and combine them with hookworm infection data and with socio-demographic and behavioral data. Uni- and multivariable logistic regression was performed on sites separately and on the pooled dataset.

Principal Findings

Univariable analyses yielded significant associations for all ecological variables. Five ecological variables stayed significant in the final multivariable model: population density (odds ratio (OR) = 0.68; 95% confidence interval (CI) = 0.63–0.73), mean annual vegetation density (OR = 0.11; 95% CI = 0.06–0.18), mean annual LST during the day (OR = 0.81; 95% CI = 0.75–0.88), mean annual LST during the night (OR = 1.54; 95% CI = 1.44–1.64), and latrine coverage in household surroundings (OR = 1.02; 95% CI = 1.01–1.04). Interaction terms revealed substantial differences in associations of hookworm infection with population density, mean annual enhanced vegetation index, and latrine coverage between the two sites with the highest prevalence of infection.

Conclusion/Significance

This study supports previous findings that remotely sensed data such as vegetation indices, LST, and elevation are strongly associated with hookworm prevalence. However, the results indicate that the influence of environmental conditions can differ substantially within a relatively small geographic area. The use of large-scale associations as a predictive tool on smaller scales is therefore problematic and should be handled with care.  相似文献   

8.

Background

The Government of Ethiopia and its partners have deployed artemisinin-based combination therapies (ACT) since 2004 and long-lasting insecticidal nets (LLINs) since 2005. Malaria interventions and trends in malaria cases and deaths were assessed at hospitals in malaria transmission areas during 2001–2011.

Methods

Regional LLINs distribution records were used to estimate the proportion of the population-at-risk protected by LLINs. Hospital records were reviewed to estimate ACT availability. Time-series analysis was applied to data from 41 hospitals in malaria risk areas to assess trends of malaria cases and deaths during pre-intervention (2001–2005) and post-interventions (2006–2011) periods.

Findings

The proportion of the population-at-risk potentially protected by LLINs increased to 51% in 2011. The proportion of facilities with ACTs in stock exceeded 87% during 2006–2011. Among all ages, confirmed malaria cases in 2011 declined by 66% (95% confidence interval [CI], 44–79%) and SPR by 37% (CI, 20%–51%) compared to the level predicted by pre-intervention trends. In children under 5 years of age, malaria admissions and deaths fell by 81% (CI, 47%–94%) and 73% (CI, 48%–86%) respectively. Optimal breakpoint of the trendlines occurred between January and June 2006, consistent with the timing of malaria interventions. Over the same period, non-malaria cases and deaths either increased or remained unchanged, the number of malaria diagnostic tests performed reflected the decline in malaria cases, and rainfall remained at levels supportive of malaria transmission.

Conclusions

Malaria cases and deaths in Ethiopian hospitals decreased substantially during 2006–2011 in conjunction with scale-up of malaria interventions. The decrease could not be accounted for by changes in hospital visits, malaria diagnostic testing or rainfall. However, given the history of variable malaria transmission in Ethiopia, more data would be required to exclude the possibility that the decrease is due to other factors.  相似文献   

9.

Background

An up-to-date and reliable map of podoconiosis is needed to design geographically targeted and cost-effective intervention in Ethiopia. Identifying the ecological correlates of the distribution of podoconiosis is the first step for distribution and risk maps. The objective of this study was to investigate the spatial distribution and ecological correlates of podoconiosis using historical and contemporary survey data.

Methods

Data on the observed prevalence of podoconiosis were abstracted from published and unpublished literature into a standardized database, according to strict inclusion and exclusion criteria. In total, 10 studies conducted between 1969 and 2012 were included, and data were available for 401,674 individuals older than 15 years of age from 229 locations. A range of high resolution environmental factors were investigated to determine their association with podoconiosis prevalence, using logistic regression.

Results

The prevalence of podoconiosis in Ethiopia was estimated at 3.4% (95% CI 3.3%–3.4%) with marked regional variation. We identified significant associations between mean annual Land Surface Temperature (LST), mean annual precipitation, topography of the land and fine soil texture and high prevalence of podoconiosis. The derived maps indicate both widespread occurrence of podoconiosis and a marked variability in prevalence of podoconiosis, with prevalence typically highest at altitudes >1500 m above sea level (masl), with >1500 mm annual rainfall and mean annual LST of 19–21°C. No (or very little) podoconiosis occurred at altitudes <1225 masl, with annual rainfall <900 mm, and mean annual LST of >24°C.

Conclusion

Podoconiosis remains a public health problem in Ethiopia over considerable areas of the country, but exhibits marked geographical variation associated in part with key environmental factors. This is work in progress and the results presented here will be refined in future work.  相似文献   

10.
This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990–2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.  相似文献   

11.

Background

Malaria is a huge public health problem in Africa that is responsible for more than one million deaths annually. In line with the Roll Back Malaria initiative and the Abuja Declaration, Eritrea and other African countries have intensified their fight against malaria. This study examines the impact of Eritrea's Roll Back Malaria Programme: 2000–2004 and the effects and possible interactions between the public health interventions in use.

Methods

This study employed cross-sectional survey to collect data from households, community and health facilities on coverage and usage of Insecticide-Treated Nets (ITNs), Indoor Residual Spraying (IRS), larvicidal activities and malaria case management. Comparative data was obtained from a similar survey carried out in 2001. Data from the Health Management Information System (HMIS) and reports of the annual assessments by the National Malaria Control Programme was used to assess impact. Time series model (ARIMA) was used to assess association.

Results

In the period 2000–2004, approximately 874,000 ITNs were distributed and 13,109 health workers and community health agents were trained on malaria case management. In 2004, approximately 81% households owned at least one net, of which 73% were ITNs and 58.6% of children 0–5 years slept under a net. The proportion of malaria cases managed by community health agents rose from 50% in 1999 to 78% in 2004. IRS coverage increased with the combined amount of DDT and Malathion used rising from 6,444 kg, in 2000 to 43,491 kg, in 2004, increasing the population protected from 117,017 to 259,420. Drug resistance necessitated regimen change to chloroquine plus sulfadoxine-pyrimethamine. During the period, there was a steep decline in malaria morbidity and case fatality by 84% and 40% respectively. Malaria morbidity was strongly correlated to the numbers of ITNs distributed (β = -0.125, p < 0.005) and the amount (kg) of DDT and Malathion used for IRS (β = -2.352, p < 0.05). The correlation between malaria case fatality and ITNs, IRS, population protected and annual rainfall was not statistically significant.

Conclusion

Eritrea has within 5 years attained key Roll Back Malaria targets. ITNs and IRS contributed most to reducing malaria morbidity.  相似文献   

12.
Malaria is the world's most important tropical parasitic disease. Malaria is a public health problem today in more than 90 countries. Worldwide prevalence of the disease is estimated to be in the order of 300-500 million clinical cases each year. Malaria is endemic in a total of 101 countries and territories. In Romania, malaria does not represent an important public health problem. In 1999, there were reported a total number of 32 malaria cases in Romanian people. 78% from these recognized as etiological agent Pl. falciparum. The malaria cases imported from Turkey (5) have had as etiological agent Pl. vivax. The most affected age group is between 21-50 years and a distribution by profession shows that sailor personnel accounts for 65.6% of all cases. Africa remains the most important endemic region from where the malaria cases in Romanian people are imported. An adequate chemoprophylaxis is not, yet, easy to obtain for Romanian people who are travelling abroad in endemic countries because of the lack of specific drugs (especially for resistant forms of Pl. falciparum). Even if the Romanian Ministry of Health had elaborated orders regarding malaria and Cloroquine is the usual drug administered, as chemoprophylaxis, to Romanian people who travel abroad, in each year in our country appears around 30-60 imported malaria cases. That is the cause why Romanian Ministry of Health wants to solve this problem which is the major cause of the malaria cases in Romanian people.  相似文献   

13.

Background

Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011.

Methods

Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson’s correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey.

Results

Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The ‘hotspot’ analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem.

Conclusion

Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It has been argued that identifying the key environmental conditions favourable for the occurrence and spread of malaria must be integrated and documented to aid future predictions of malaria in Chennai.  相似文献   

14.

Background

Mobile populations present unique challenges to malaria control and elimination efforts. Each year, a large number of individuals travel to northwest Amhara Region, Ethiopia to seek seasonal employment on large-scale farms. Agricultural areas typically report the heaviest malaria burden within Amhara thereby placing migrants at high risk of infection. Yet little is known about these seasonal migrants and their malaria-related risk factors.

Methods and Findings

In July 2013, a venue-based survey of 605 migrant laborers 18 years or older was conducted in two districts of North Gondar zone, Amhara. The study population was predominantly male (97.7%) and young (mean age 22.8 years). Plasmodium prevalence by rapid diagnostic test (RDT) was 12.0%; One quarter (28.3%) of individuals were anemic (hemoglobin <13 g/dl). Nearly all participants (95.6%) originated from within Amhara Region, with half (51.6%) coming from within North Gondar zone. Around half (51.2%) slept in temporary shelters, while 20.5% regularly slept outside. Only 11.9% of participants had access to a long lasting insecticidal net (LLIN). Reported net use the previous night was 8.8% overall but 74.6% among those with LLIN access. Nearly one-third (30.1%) reported having fever within the past two weeks, of whom 31.3% sought care. Cost and distance were the main reported barriers to seeking care. LLIN access (odds ratio [OR] = 0.30, P = 0.04) and malaria knowledge (OR = 0.50, P = 0.02) were significantly associated with reduced Plasmodium infection among migrants, with a similar but non-significant trend observed for reported net use the previous night (OR = 0.16, P = 0.14).

Conclusions

High prevalence of malaria and anemia were observed among a young population that originated from relatively proximate areas. Low access to care and low IRS and LLIN coverage likely place migrant workers at significant risk of malaria in this area and their return home may facilitate parasite transport to other areas. Strategies specifically tailored to migrant farm workers are needed to support malaria control and elimination activities in Ethiopia.  相似文献   

15.
Malaria is a mosquito-borne disease of global concern with 1.5 to 2.7 million people dying each year and many more suffering from it. In Indonesia, malaria is a major public health issue with around six million clinical cases and 700 deaths each year. Malaria is most prevalent in the developing countries of the world. Aid agencies have provided financial and technical assistance to malaria-prone countries in an effort to battle the disease. Over the past decade, the focus of some of this assistance has been in the provision of geographic information systems (GIS) hardware, software and training. In theory, GIS can be a very effective tool in combating malaria, however, in practice there have been a host of challenges to its successful use.This review is based, in part, on the literature but also on our experience working with the Indonesian Ministry of Health. The review identifies three broad problem areas. The first of these relates to data concerns. Without adequate data, GIS is not very useful. Specific problem areas include: accurate data on the disease and how it is reported; basic environmental data on vegetation, land uses, topography, rainfall, etc.; and demographic data on the movement of people. The second problem area involves technology - specifically computer hardware, GIS software and training. The third problem area concerns methods - assuming the previous data and technological problems have been resolved - how can GIS be used to improve our understanding of malaria? One of the main methodological tools is spatial statistical analysis, however, this is a newly developing field, is not easy to understand and suffers from the fact that there is no agreement on standard methods of analysis.The paper concludes with a discussion of strategies that can be used to overcome some of these problems. One of these strategies involves using ArcView GIS software in combination with ArcExplorer (a public domain program that can read ArcView files) to deal with the problem of needing multiple copies of GIS software. Another strategy involves the development of a self-paced training package that can be used to train individuals  相似文献   

16.
Malaria in South Africa is still a problem despite existing efforts to eradicate the disease. In the Vhembe District Municipality, malaria prevalence is still high, with a mean incidence rate of 328.2 per 100,0000 persons/year. This study aimed at evaluating environmental covariates, such as vegetation moisture and vegetation greenness, associated with malaria vector distribution for better predictability towards rapid and efficient disease management and control. The 2005 malaria incidence data combined with Landsat 5 ETM were used in this study. A total of nine remotely sensed covariates were derived, while pseudo-absences in the ratio of 1:2 (presence/absence) were generated at buffer distances of 0.5–20 km from known presence locations. A stepwise logistic regression model was applied to analyse the spatial distribution of malaria in the area. A buffer distance of 10 km yielded the highest classification accuracy of 82% at a threshold of 0.9. This model was significant (ρ < 0.05) and yielded a deviance (D2) of 36%. The significantly positive relationship (ρ < 0.05) between the soil-adjusted vegetation index and malaria distribution at all buffer distances suggests that malaria vector (Anopheles arabiensis) prefer productive and greener vegetation. The significant negative relationship between water/moisture index (a1 index) and malaria distribution in buffer distances of 0.5, 10, and 20 km suggest that malaria distribution increases with a decrease in shortwave reflectance signal. The study has shown that suitable habitats of malaria vectors are generally found within a radius of 10 km in semi-arid environments, and this insight can be useful to aid efforts aimed at putting in place evidence-based preventative measures against malaria infections. Furthermore, this result is important in understanding malaria dynamics under the current climate and environmental changes. The study has also demonstrated the use of Landsat data and the ability to extract environmental conditions which favour the distribution of malaria vector (An. arabiensis) such as the canopy moisture content in vegetation, which serves as a surrogate for rainfall.  相似文献   

17.
Malaria is a major public health problem especially in the tropics with the potential to significantly increase in response to changing weather and climate. This study explored the impact of weather and climate and its variability on the occurrence and transmission of malaria in Akure, the tropical rain forest area of southwest and Kaduna, in the savanna area of Nigeria. We investigate this supposition by looking at the relationship between rainfall, relative humidity, minimum and maximum temperature, and malaria at the two stations. This study uses monthly data of 7 years (2001–2007) for both meteorological data and record of reported cases of malaria infection. Autoregressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Of all the models tested, the ARIMA (1, 0, 1) model fits the malaria incidence data best for Akure and Kaduna according to normalized Bayesian information criterion (BIC) and goodness-of-fit criteria. Humidity and rainfall have almost the same trend of association in all the stations while maximum temperature share the same negative association at southwestern stations and positive in the northern station. Rainfall and humidity have a positive association with malaria incidence at lag of 1 month. In all, we found that minimum temperature is not a limiting factor for malaria transmission in Akure but otherwise in the other stations.  相似文献   

18.

Background

After years of implementing Roll Back Malaria (RBM) interventions, the changing landscape of malaria in terms of risk factors and spatial pattern has not been fully investigated. This paper uses the 2010 malaria indicator survey data to investigate if known malaria risk factors remain relevant after many years of interventions.

Methods

We adopted a structured additive logistic regression model that allowed for spatial correlation, to more realistically estimate malaria risk factors. Our model included child and household level covariates, as well as climatic and environmental factors. Continuous variables were modelled by assuming second order random walk priors, while spatial correlation was specified as a Markov random field prior, with fixed effects assigned diffuse priors. Inference was fully Bayesian resulting in an under five malaria risk map for Malawi.

Results

Malaria risk increased with increasing age of the child. With respect to socio-economic factors, the greater the household wealth, the lower the malaria prevalence. A general decline in malaria risk was observed as altitude increased. Minimum temperatures and average total rainfall in the three months preceding the survey did not show a strong association with disease risk.

Conclusions

The structured additive regression model offered a flexible extension to standard regression models by enabling simultaneous modelling of possible nonlinear effects of continuous covariates, spatial correlation and heterogeneity, while estimating usual fixed effects of categorical and continuous observed variables. Our results confirmed that malaria epidemiology is a complex interaction of biotic and abiotic factors, both at the individual, household and community level and that risk factors are still relevant many years after extensive implementation of RBM activities.  相似文献   

19.
Larval surveillance is the central approach for monitoring dengue vector populations in Indonesia. However, traditional larval indices are ineffective for measuring mosquito population dynamics and predicting the dengue transmission risk. We conducted a 14-month ovitrap surveillance. Eggs and immature mosquitoes were collected on a weekly basis from an urban village of Bandung, namely Sekejati. Ovitrap-related indices, namely positive house index (PHI), ovitrap index (OI), and ovitrap density index (ODI), were generated and correlated with environmental variables, housing type (terraced or high-density housing), ovitrap placement location (indoor or outdoor; household or public place), and local dengue cases. Our results demonstrated that Aedes aegypti was significantly predominant compared with Aedes albopictus at each housing type and ovitrap placement location. Ovitrap placement locations and rainfall were the major factors contributing to variations in PHI, OI, and ODI, whereas the influences of housing type and temperature were subtle. Indoor site values were significantly positively correlated to outdoor sites’ values for both OI and ODI. OI and ODI values from households were best predicted with those from public places at 1- and 0-week lags, respectively. Weekly rainfall values at 4- and 3-week lags were the best predictors of OI and ODI for households and public places, respectively. Monthly mean PHI, OI, and ODI were significantly associated with local dengue cases. In conclusion, ovitrap may be an effective tool for monitoring the population dynamics of Aedes mosquitoes, predicting dengue outbreaks, and serving as an early indicator to initiate environmental clean-up. Ovitrap surveillance is easy for surveyors if they are tasked with a certain number of ovitraps at a designated area, unlike the existing larval surveillance methodology, which entails identifying potential breeding sites largely at the surveyors’ discretion. Ovitrap surveillance may reduce the influence of individual effort in larval surveillance that likely causes inconsistency in results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号