首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MreB proteins are bacterial actin homologues thought to have a role in cell shape determination by positioning the cell wall synthetic machinery. Many bacteria, particularly Gram-positives, have more than one MreB isoform. Bacillus subtilis has three, MreB, Mbl and MreBH, which colocalize in a single helical structure. We now show that the helical pattern of peptidoglycan (PG) synthesis in the cylindrical part of the rod-shaped cell is governed by the redundant action of the three MreB isoforms. Single mutants for any one of mreB isoforms can still incorporate PG in a helical pattern and generate a rod shape. However, after depletion of MreB in an mbl mutant (or depletion of all three isoforms) lateral wall PG synthesis was impaired and the cells became spherical and lytic. Overexpression of any one of the MreB isoforms overcame the lethality as well as the defects in lateral PG synthesis and cell shape. Furthermore, MreB and Mbl can associate with the peptidoglycan biosynthetic machinery independently. However, no single MreB isoform was able to support normal growth under various stress conditions, suggesting that the multiple isoforms are used to allow cells to maintain proper growth and morphogenesis under changing and sometimes adverse conditions.  相似文献   

2.
MreB proteins play a major role during morphogenesis of rod‐shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane‐associated MreB polymers have been shown to be associated to elongation‐specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intracellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso‐diaminopimelate (m‐DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intracellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane‐associated cell wall synthesizing machineries.  相似文献   

3.
The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.  相似文献   

4.
The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.  相似文献   

5.
6.
MreB proteins are bacterial actin homologs involved in cell morphogenesis and various other cellular processes. However, the effector proteins used by MreBs remain largely unknown. Bacillus subtilis has three MreB isoforms. Mbl and possibly MreB have previously been shown to be implicated in cell wall synthesis. We have now found that the third isoform, MreBH, colocalizes with the two other MreB isoforms in B. subtilis and also has an important role in cell morphogenesis. MreBH can physically interact with a cell wall hydrolase, LytE, and is required for its helical pattern of extracellular localization. Moreover, lytE and mreBH mutants exhibit similar cell-wall-related defects. We propose that controlled elongation of rod-shaped B. subtilis depends on the coordination of cell wall synthesis and hydrolysis in helical tracts defined by MreB proteins. Our data also suggest that physical interactions with intracellular actin bundles can influence the later localization pattern of extracellular effectors.  相似文献   

7.
Bacteria display a variety of shapes, which have biological relevance. In most eubacteria, cell shape is maintained by the tough peptidoglycan (PG) layer of the cell wall, the sacculus. The organization of PG synthesis machineries, orchestrated by different cytoskeletal elements, determines the specific shapes of sacculi. In rod-shaped bacteria, the actin-like (MreB) and the tubuline-like (FtsZ) cytoskeletons control synthesis of the sidewall (elongation) and the crosswall (septation) respectively. Much less is known concerning cell morphogenesis in cocci, which lack MreB proteins. While spherical cocci exclusively display septal growth, ovococci additionally display peripheral growth, which is responsible of the slight longitudinal expansion that generates their ovoid shape. Here, we report that the ovococcus Lactococcus lactis has the ability to become rod-shaped. L. lactis IL1403 wild-type cells form long aseptate filaments during both biofilm and planktonic growth in a synthetic medium. Nascent PG insertion and the division protein FtsK localize in multiple peripheral rings regularly spaced along the filaments. We show that filamentation results from septation inhibition, and that penicillin-binding proteins PBP2x and PBP2b play a direct role in this process. We propose a model for filament formation in L. lactis, and discuss the possible biological role of such morphological differentiation.  相似文献   

8.
The discovery of cytoskeletal elements in prokaryotes has dramatically changed the way we think about bacterial cell morphogenesis. The rod shape of Bacillus subtilis is maintained by the two major polymers (peptidoglycan and teichoic acids) of its thick cell wall and determined by the way these are inserted during growth. The current view is that the dynamic tubulin-like (FtsZ) and actin-like (MreB) cytoskeletons orchestrate, both in time and space, the assembly of macromolecular machineries that effect cell wall synthesis and hydrolysis during cell division and cell elongation, respectively.  相似文献   

9.
Polar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA. In Arabidopsis, colocalization of NPA amidase and aminopeptidase (AP) activities, inhibition of auxin transport by artificial beta-naphthylamide substrates, and saturable displacement of NPA by the AP inhibitor bestatin suggest that PM APs may be involved in both low-affinity NPA binding and hydrolysis. We report the purification and molecular cloning of NPA-binding PM APs and associated proteins from Arabidopsis. This is the first report of PM APs in plants. PM proteins were purified by gel permeation, anion exchange, and NPA affinity chromatography monitored for tyrosine-AP activity. Lower affinity fractions contained two orthologs of mammalian APs involved in signal transduction and cell surface-extracellular matrix interactions. AtAPM1 and ATAPP1 have substrate specificities and inhibitor sensitivities similar to their mammalian orthologs, and have temporal and spatial expression patterns consistent with previous in planta histochemical data. Copurifying proteins suggest that the APs interact with secreted cell surface and cell wall proline-rich proteins. AtAPM1 and AtAPP1 are encoded by single genes. In vitro translation products of ATAPM1 and AtAPP1 have enzymatic activities similar to those of native proteins.  相似文献   

10.
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin‐like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins.  相似文献   

11.
The peptidoglycan that surrounds Gram‐positive bacteria is affixed with a range of macromolecules that enable the microbe to effectively interact with its environment. Distinct enzymes decorate the cell wall with proteins and glycopolymers. Sortase enzymes covalently attach proteins to the peptidoglycan, while LytR‐CpsA‐Psr (LCP) proteins are thought to attach teichoic acid polymers and capsular polysaccharides. Ton‐That and colleagues have discovered a new glycosylation pathway in the oral bacterium Actinomyces oris in which sortase and LCP enzymes operate on the same protein substrate. The A. oris LCP protein has a novel function, acting on the cell surface to transfer glycan macromolecules to a protein, which is then attached to the cell wall by a sortase. The reactions are tightly coupled, as elimination of the sortase causes the lethal accumulation of glycosylated protein in the membrane. Since sortase enzymes are attractive drug targets, this novel finding may provide a convenient cell‐based tool to discover inhibitors of this important enzyme family.  相似文献   

12.
MreB, the bacterial actin homologue, is thought to function in spatially co-ordinating cell morphogenesis in conjunction with MreC, a protein that wraps around the outside of the cell within the periplasmic space. In Caulobacter crescentus, MreC physically associates with penicillin-binding proteins (PBPs) which catalyse the insertion of intracellularly synthesized precursors into the peptidoglycan cell wall. Here we show that MreC is required for the spatial organization of components of the peptidoglycan-synthesizing holoenzyme in the periplasm and MreB directs the localization of a peptidoglycan precursor synthesis protein in the cytosol. Additionally, fluorescent vancomycin (Van-FL) labelling revealed that the bacterial cytoskeletal proteins MreB and FtsZ, as well as MreC and RodA, were required for peptidoglycan synthetic activity. MreB and FtsZ were found to be required for morphogenesis of the polar stalk. FtsZ was required for a cell cycle-regulated burst of peptidoglycan synthesis early in the cell cycle resulting in the synthesis of cross-band structures, whereas MreB was required for lengthening of the stalk. Thus, the bacterial cytoskeleton and cell shape-determining proteins such as MreC, function in concert to orchestrate the localization of cell wall synthetic complexes resulting in spatially co-ordinated and efficient peptidoglycan synthetic activity.  相似文献   

13.
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring‐like structure containing FtsZ (the Z ring) at mid‐cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid‐cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell‐wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.  相似文献   

14.
MreB proteins are bacterial homologues of actin that directly determine cell shape and are involved in a range of other cellular processes in non-spherical bacteria. Like F-actin in eukaryotes, MreBs self-assemble into dynamic filamentous structures that are essential for cell viability. Recent studies have demonstrated that the MreB cytoskeletal scaffold governs shape determination by controlling functions related to the bacterial cell wall (probably by recruiting and directing peptidoglycan-synthesizing and modifying proteins). Here I consider general implications for bacterial morphogenesis, and the basis for differences in wall expansion and cylindrical cell shape, based on recent studies aimed to determine the role of MreBs in bacteria with different modes of growth.  相似文献   

15.
The Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S.?aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS. Although not essential, deletion of all three LCP proteins severely impairs cell division. We show here that VraSR-dependent CWSS expression was up to 250-fold higher in single, double and triple LCP mutants than in wild type S.?aureus in the absence of external stress. The LCP triple mutant was virtually depleted of wall teichoic acids (WTA), which could be restored to different degrees by any of the single LCP proteins. Subinhibitory concentrations of tunicamycin, which inhibits the first WTA synthesis enzyme TarO (TagO), could partially complement the severe growth defect of the LCP triple mutant. Both of the latter findings support a role for S.?aureus LCP proteins in late WTA synthesis, as in Bacillus subtilis where LCP proteins were recently proposed to transfer WTA from lipid carriers to the cell wall peptidoglycan. Intrinsic activation of the CWSS upon LCP deletion and the fact that LCP proteins were essential for WTA-loading of the cell wall, highlight their important role(s) in S.?aureus cell envelope biogenesis.  相似文献   

16.
The bacterial actin homologue, MreB, is required for the maintenance of a rod-shaped cell and has been shown to form spirals that traverse along the longitudinal axis of Bacillus subtilis and Escherichia coli cells. The depletion of MreB in Caulobacter crescentus resulted in lemon-shaped cells that possessed defects in the integrity of the cell wall. MreB localization appeared as bands or spirals that encircled the cell along its entire length and switched to a mid-cell location at a time that coincided with the initiation of cell division. The formation of smaller MreB spirals or bands at the mid-cell was dependent on the presence on the cytokinetic protein, FtsZ. Penicillin-binding protein 2 (PBP2) also formed band-like structures perpendicular to the cell periphery that resembled, and depended upon, MreB localization. PBP2 co-immunoprecipitated with several other penicillin-binding proteins, suggesting that these proteins are in association in Caulobacter cells. We hypothesize that MreB filaments function as a cytoskeleton that serves as an organizer or tracking device for the PBP2-peptidoglycan biosynthesis complex.  相似文献   

17.
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.  相似文献   

18.
The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery. Here, we present the structure of the major, periplasmic part of MreC from Listeria monocytogenes at 2.5 A resolution. MreC forms a dimer through an intimate contact along an N-terminal alpha-helix that connects the transmembrane region with two C-terminal beta-domains. The translational relationship between the molecules enables, in principle, filament formation. One of the beta-domains shows structural similarity to the chymotrypsin family of proteins and possesses a highly conserved Thr Ser dipeptide. Unexpectedly, mutagenesis studies show that the dipeptide is dispensable for maintaining cell shape and viability in both Escherichia coil and Bacillus subtilis. Bacterial two-hybrid experiments reveal that MreC Interacts with high-molecular-weight penicillin-binding proteins (PBPs), rather than with low-molecular-weight endo- and carboxypeptidases, indicating that MreC might act as a scaffold to which the murein synthases are recruited in order to spatially organize the synthesis of new cell wall material. Deletion analyses indicate which domains of B. subtilis MreC are required for interaction with MreD as well as with the PBPs.  相似文献   

19.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

20.
RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号