首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices.  相似文献   

2.
A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.  相似文献   

3.
Landfill methane oxidation in soil and bio-based cover systems: a review   总被引:1,自引:0,他引:1  
Mitigation of landfill gases has gained the utmost importance in recent years due to the increase in methane (CH4) emissions from landfills worldwide. This, in turn, can contribute to global warming and climatic changes. The concept of microbially mediated methane oxidation in landfill covers by using methanotrophic microorganisms has been widely adopted as a method to counter the rise in methane emissions. Traditionally, landfill soil covers were used to achieve methane oxidation, thereby reducing methane emissions. Meanwhile, the continual rise of CH4 emissions from landfills and the significant need to and importance of developing a better technology has led researchers to explore different methods to enhance microbial methane oxidation by using organic rich materials such as compost in landfill covers. The development and field application of such bio-based systems, explored by various researches worldwide, eventually led to more widely accepted and better performing cover systems capable of reducing CH4 emissions from landfills. However, the long-term performance of bio-based cover systems were found to be negatively affected by factors such as the material’s ability to self-degrade, causing CH4 to be generated rather than oxidized as well as the greater potential for forming pore-clogging exopolymeric substances. In order to design an effective cover system for landfills, it is essential to have a thorough understanding of the concepts incorporated into methodologies currently in favor along with their pros and cons. This review summarizes previous laboratory and field-scale studies conducted on various soil and bio-based cover systems, along with the modeling mechanisms adopted for quantifying CH4 oxidation rates. Finally, several issues and challenges in developing effective and economical soil and bio-based cover systems are presented.  相似文献   

4.
Two instrumented test sections were constructed in summer 1999 at the Kiefer Landfill near Sacramento, California to test the hydraulic performance of two proposed alternative final covers. Both test sections simulated monolithic evapotranspiration (ET) designs that differed primarily in thickness. Both were seeded with a mix of two perennial and one annual grass species. Oleander seedlings were also planted in the thicker test section. Detailed hydrologic performance monitoring of the covers was conducted from 1999 through 2005, The thicker test section met the performance criterion (average percolation of <3 mm/y). The thinner test section transmitted considerably more percolation (average of 55 mm/y). Both test sections were decommissioned in summer 2005 to investigate changes in soil hydraulic properties, geomorphology, and vegetation and to collect data to support a revised design. Field data from hydrologic monitoring and the decommissioning study were subsequently included in a hydrologic modeling study to estimate the performance of an optimized cover system for full-scale application. The decommissioning study showed that properties of the soils changed over the monitoring period (saturated hydraulic conductivity and water holding capacity increased, density decreased) and that the perennial grasses and shrubs intended for the cover were out-competed by annual species with shallower roots and lesser capacity for water uptake. Of these changes, reduced ET from the shallow-rooted annual vegetation is believed to be the primary cause for the high percolation rate from the thinner test section. Hydrologic modeling suggests that the target hydraulic performance can be achieved using an ET cover with similar thickness to the thin test section if perennial vegetation species observed in surrounding grasslands can be established. This finding underscores the importance of establishing and maintaining the appropriate vegetation on ET covers in this climate.  相似文献   

5.
Compacted soil liners are widely used as a waste containment barrier to control or restrict the migration of contaminant/leachate from the landfill into the environment because of their low hydraulic conductivity, attenuation capacity, resistance to damage or puncture, and cost effectiveness. Compacted soil liners are usually composed of natural inorganic clays or clayey soils. If natural clayey soils are not available, kaolinite or commercially available high swelling clay (bentonite) can be mixed with local soils or sand. This study examines the potential of a sedimentary residual soil as a waste containment barrier in landfills. The laboratory experiments conducted were: grain size distribution, Atterberg limits, swelling tests, compaction, volumetric shrinkage strain, unconfined compression, hydraulic conductivity and cation exchange capacity. The experimental results were compared with those recommended by various researchers for evaluation of its suitability. Test results showed that the soil compacted with modified Proctor compaction effort possesses low hydraulic conductivity (≤1 × 10?7 cm/s) and adequate strength. In addition, compacted sedimentary residual soil exhibited little volumetric shrinkage strain of below 4% at this compaction effort. Thus, the sedimentary residual soil could be effectively used for the construction of a waste containment barrier in landfills.  相似文献   

6.
Production and distribution of fine roots (≤2.0 mm diameter) are central to belowground ecological processes. This is especially true where vegetation serves as a pump to prevent saturation of soil and possible drainage of excess water into or from potentially toxic waste material stored underground or in mounds aboveground. In this study undertaken near Sydney in Australia, we determined fine root biomass and evapotranspiration (ET) on a waste disposal site restored with either a 15-year-old grass sward or plantations of mixed woody species that were either 5 years old (plantation-5) with a vigorous groundcover of pasture legumes and grasses, or 3 years old (plantation-3) with sparse groundcover. These sites were compared with nearby remnant woodland; all four were located within 0.5-km radius at the same site. Ranking of fine root biomass was in the order woodland (12.3 Mg ha−1) > plantation-5 (8.3 Mg ha−1) > grass (4.9 Mg ha−1) > plantation-3 (1.2 Mg ha−1) and was not correlated with nutrient contents in soil or plants, but reflected the form and age of the vegetation covers. Trends in root length density (RLD) and root area index (RAI) followed those in root biomass, but the differences in RAI were larger than those in biomass amongst the vegetation covers. Annual ET in the dry year of 2009 was similar in the three woody vegetation covers (652–683 mm) and was at least 15% larger than for the grass (555 mm), which experienced restrained growth in winter and periodic mowing. This resulted in drainage from the grass cover while there was no drainage from any of the woody vegetation covers. In plantation-5, root biomass, RAI and RLD were reduced in the rain shadow side of the tree rows. Similarly, the amount and depth of rooting in the groundcover were reduced close to the trees compared to midway between rows. Differences in the root variables were larger than those in ET, which suggested that more roots were produced than were needed for water uptake and/or presence of considerable amounts of necromass. We conclude that vegetation covers, such as plantation-5 consisting of widely spaced trees and a heavy groundcover containing winter-active pasture legumes, will promote year-round water-use with a reduced risk of deep rooting that could breach buried wastes. This function could be sustained through progressive thinning of trees to account for not more than 25% of the whole canopy cover; this will minimize competition for limited soil-water and thereby constrain deep rooting as vegetation ages and attains climax.  相似文献   

7.
Closed or abandoned landfills represent significant land areas, often in or near urban centers, that are potential sites for ecological restoration of native woodlands. But current guidelines in many jurisdictions do not allow for the installation of trees or shrubs above landfill clay caps, although these plants have many environmental, functional, and aesthetic advantages, including a rapid start to community succession. Typical closure procedures for capped landfills include only a grass cover to control moisture infiltration and impede soil erosion. The main concern that limits the application of a woody cover to a closed landfill is that roots may penetrate and weaken the clay cap. As part of a comprehensive experimental program on woodland restoration, we installed 22 tree and shrub species on Staten Island, New York (the Fresh Kills Sanitary Landfill). We found no evidence that roots of the transplanted woody plants penetrate caps used on these landfills. Root growth requirements and dynamics stop penetration of these materials. Anoxic and acidic conditions were found in the sandy subsoil above the cap, as indicated by corrosion patterns on steel test rods. Also, the intensity of mycorrhizal infection on the experimental plants was high in the surface soil and decreased progressively with increasing soil depth. The potential vertical rooting depth during this time period was greater than that occurring over the clay cap. This was shown from data collected on a nearby control site, where seven of the species were installed on an engineered soil lacking a clay barrier layer, and roots of all seven species penetrated deeper than on the landfill. The engineered landfill soils are poor growth media for roots, and below ground constraints that limit restoration on these sites must be addressed.  相似文献   

8.
遥感数据支持下不同地表覆盖的区域蒸散   总被引:11,自引:0,他引:11  
将地表能量平衡系统(SEBS)扩展成遥感日蒸散估算模型,利用MODIS遥感数据估算了黄淮海地区的区域蒸散,并在地理信息系统的支持下分析了不同地表覆盖下的区域蒸散统计分布特征.在缺乏各地表覆盖类型相应蒸散量实测值进行对比的情况下,以2001年4月17日估算的日蒸散量为例,通过各地表覆盖类型日蒸散量间的相互对比分析表明,SEBS估算的区域日蒸散量具有一定的合理性.分析结果表明:在黄淮海地区,荒地具有最低的蒸散量;森林、灌木、草地等地表覆盖类型具有中等的蒸散量;而水体、湿地以及耕地具有较高的蒸散量.可能由于包含绿地和水面,城镇用地的蒸散量也较高.土壤含水量的空间差异性导致森林、灌木、草地和耕地等地表覆盖类型的蒸散量具有明显的空间差异性.耕地蒸散量的空间差异性可以为制定合理、高效的农田灌溉计划提供指示作用.SEBS遥感日蒸散模型的局限性在于有可能低估水体和湿地等地表覆盖类型的蒸散量.  相似文献   

9.
Landfills are a vital component of our waste handling processes. Our lack of knowledge on the microbial processes in these systems, however, hampers our ability to design the next generation of landfills that: (1) enhance the rate and extent of waste decomposition, (2) produce byproducts of some value (e.g., methane that can be used for energy generation), and, (3) minimize their overall impact on driving climate change through the emission of greenhouse gases. In this review, the current state of knowledge the microbial community structure and activity in both the refuse and overlying cover soils is discussed, and suggestions provided for future research in this critical aspect of our infrastructure.  相似文献   

10.
M. Lavoie  M. C. Mack 《Biogeochemistry》2012,107(1-3):227-239
In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15?cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between understory vegetation distribution and soil characteristics. Our results showed higher microbial respiration rates and microbial biomass in the oldest site and greater net N mineralization rates in the mid-successional site. Although spatial heterogeneity was absent at the scale studied for the majority of soil variables (60%), understory vegetation abundances and forest floor cover, spatial heterogeneity decreased with time after fire for the depth of organic horizon, soil microbial biomass, N mineralization rates and feathermoss cover. Our results also showed that increasing time after fire decreased the number of correlations between understory vegetation and soil characteristics while it increased between forest floor covers and soil characteristics. Overall, our study suggest that fire initially creates a patchy mosaic of forest floor cover, from fire hot spots, where high intensity burning exposes mineral soil, to practically unburned areas with intact mosses and lichens. As time since fire passes, forest floor cover and soil characteristics tend to become more uniform as understory species fill in severely burned areas.  相似文献   

11.
Soil seed bank of the waste landfills in South Korea   总被引:1,自引:0,他引:1  
Kee Dae Kim  Eun Ju Lee 《Plant and Soil》2005,271(1-2):109-121
The restoration of urban landfill is a topic of growing interest in reclamation ecology as the acreage of abandoned sites near cities increases. The goals of this study were to assess the ecological status of waste landfills and to elucidate the role of seed banks in the establishment of vegetation at these sites. The study sites were located at five landfills around Seoul and Kyongki Province. On average, soils were sampled on 20 plots per landfill in 2001 to record species composition and to estimate the number of seeds in the soil. Soil seed bank vegetation and the individual number of seedlings that germinated were recorded using the seedling emergence method. Relative density per species was calculated from the number of individual seedlings. We conducted canonical correspondence analysis (CCA) using the program CANOCO to survey the relationships between 23 environmental variables and plant importance values. Environmental variables included categorical and numerical variables (landfill age, landfill size, distance from landfill edge, human disturbance level, slope, periodic management level) and soil physico-chemical variables (bulk density, soil moisture content, organic matter content, total N, available P, K, Na, Ca, Mg, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). The mean seedling density per m 2 differed significantly among sites (P < 0.05). As landfill age increased, the mean seedling density per m 2 decreased. The mean seedling density of the Sangpaedong landfill, which was less than 1 year old, was higher than that found in 6- and 7-year-old landfills. The Sangpaedong landfill mainly contained seeds of Chenopodium albumL. and Digitaria ciliaris(L.) SCOP. With regard to early vegetative colonization in landfills, our results highlighted the importance of seed banks occurring in cover soils. Cover soils, derived from various sources, will determine landfill landscapes because of different seed banks present in them. The first axis of the CCA was correlated with landfill age, Na, and human disturbance level, while the second axis was correlated with landfill size, slope, periodic management level, Zn, total N, and organic matter content. Understanding seed banks in landfill cover soils is important, therefore, for proper landfill management and restoration.  相似文献   

12.
He R  Ruan A  Jiang C  Shen DS 《Bioresource technology》2008,99(15):7192-7199
CH4 oxidation capacities and microbial community structures developed in response to the presence of CH4 were investigated in two types of landfill cover soil microcosms, waste soil (fine material in stabilized waste) and clay soil. CH4 emission fluxes were lower in the waste soil cover over the course of the experiment. After exposure to CH4 flow for 120 days, the waste soil developed CH4 oxidation capacity from 0.53 to 11.25-13.48micromol CH4gd.w.(-1)h(-1), which was ten times higher than the clay soil. The topsoils of the two soil covers were observed dried and inhibited CH4 oxidation. The maximum CH4 oxidation rate occurred at the depth of 10-20cm in the waste soil cover (the middle layer), whereas it took place mainly at the depth of 20-30cm in the clay soil cover (the bottom layer). The amounts of the phospholipid fatty acid (PLFA) biomarks 16:1omega8c and 18:1omega8c for type I and II methanotrophs, respectively, showed that type I methanotrophic bacteria predominated in the clay soil, while the type II methanotrophic bacteria were abundant in the waste soil, and the highest population in the middle layer. The results also indicated that a greater active methanotrophic community was developed in the waste soil relative to the clay soil.  相似文献   

13.
以人睾丸组织总RNA为材料,用RT-PCR方法合成了人腺苷酸环化酶激活多肽(ACAP)编码区(530bp)和全长cDNA(1930bp)片段.并分别将这些cDNA片段克隆入pUC18载体的SmaⅠ限制性内切酶位点.对重组质粒分别采用直接DNA双链末端终止法和在核酸外切酶Ⅲ和核酸酶S1作用下连续缺失DNA后,相继克隆,构成一系列连续缺失的缺失体的方法,测定了全部核苷酸顺序.结果表明:ACAP编码区的cDNA顺序与已报道的有12处碱基的改变,其中11处碱基顺序的改变不引起编码的氨基酸变化,只有第385位的T→A后,才引起其编码的氨基酸由Ser→Thr,但由于Ser和Thr的理化性质极其相似,这一变化可能并不导致蛋白质的生物活性的变化.这些改变可能是由于种族、群体或个体的差异.  相似文献   

14.
Vegetation changes, particularly those involving transitions between tree‐ and grass‐dominated covers, often modify evaporative water losses as a result of plant‐mediated shifts in moisture access and demand. Massive afforestation of native grasslands, particularly important in the Southern Hemisphere, may have strong yet poorly quantified effects on the hydrological cycle. We explored water use patterns in Eucalyptus grandis plantations and the native humid grasslands that they replace in Central Argentina. In order to uncover the interactive effects that land cover type, soil texture and climate variability may have on evaporative water losses and water use efficiency, we estimated daily evapotranspiration (ET) in 117 tree plantations and grasslands plots across a soil textural gradient (clay‐textured Vertisols to sandy‐textured Entisols) using radiometric information from seven Landsat scenes, existing timber productions records, and 13C measurements in tree stems. Tree plantations had cooler surface temperatures (?5°C on average) and evaporated more water (+80% on average) than grasslands at all times and across all sites. Absolute ET differences between grasslands and plantations ranged from ~0.6 to 2 mm day?1 and annual up‐scaling suggested values of ~630 and ~1150 mm yr?1 for each vegetation type, respectively. The temporal variability of ET was significantly lower in plantations compared with grasslands (coefficient of variation 36% vs. 49%). Daily ET increased as the water balance became more positive (accumulated balance for previous 18 days) with a saturation response in grassland vs. a continuous linear increase in plantations, suggesting lower ecophysiological limits to water loss in tree canopies compared with the native vegetation. Plantation ET was more strongly affected by soil texture than grassland ET and peaked in coarse textured sites followed by medium and fine textured sites. Timber productivity as well as 13C concentration in stems peaked in medium textured sites, indicating lower water use efficiency on extreme textures and suggesting that water limitation was not responsible for productivity declines towards finer and coarser soils. Our study highlighted the key role that vegetation type plays on evapotranspiration and, therefore, in the hydrological cycle. Considering that tree plantations may continue their expansion over grasslands, problematic changes in water management and, perhaps, in local climate can develop from the higher evaporative water losses of tree plantations.  相似文献   

15.
氧化亚氮(N2O)是第三大温室气体和最主要的臭氧层破坏气体.填埋是目前城市生活垃圾处理处置的主要方式,而垃圾填埋场是N2O的排放源之一.实验室研究和现场测定均表明,生活垃圾填埋场可以有高的N2O释放通量,但不同填埋场测定数据差异很大.目前,对生活垃圾填埋场N2O排放量的原位准确测定以及排放机理和重要性的认识仍有很多不足.本文概述了生活垃圾填埋场N2O排放研究现状,从垃圾堆体和覆土层两部分探讨了传统厌氧卫生填埋场的N2O产生和排放机理,并就此对新型脱氮型生物反应器填埋场做了相应探讨.最后,就静态箱法、涡度相关法等N2O通量测定方法在填埋场的适用性进行了讨论,并展望了填埋场N2O排放的研究方向.  相似文献   

16.
Woody vegetation cultivated for moisture management on evapotranspiration (ET) landfill covers could potentially serve a secondary function as a biomass crop. However, research is required to evaluate the extent to which trees could be harvested from ET covers without significantly impacting their moisture management function. This study investigated the drainage through a six-year-old, primarily poplar/cottonwood ET test cover for a period of one year following the harvest of all woody biomass exceeding a height of 30 cm above ground surface. Results were compared to previously reported drainage observed during the years leading up to the coppice event. In the first year following coppice, the ET cover was found to be 93% effective at redirecting moisture during the spring/summer season, and 95% effective during the subsequent fall/winter season. This was slightly lower than the 95% and 100% efficacy observed in the spring/summer and fall/winter seasons, respectively, during the final measured year prior to coppice. However, the post-coppice efficacy was higher than the efficacy observed during the first three years following establishment of the cover. While additional longer-term studies are recommended, this project demonstrated that woody ET covers could potentially produce harvestable biomass while still effectively managing aerial moisture.  相似文献   

17.
Reynolds  James F.  Kemp  Paul R.  Tenhunen  John D. 《Plant Ecology》2000,150(1-2):145-159
We used the patch arid land simulator (PALS-FT) – a simple, mechanistic ecosystem model – to explore long-term variation in evapotranspiration (ET) as a function of variability in rainfall and plant functional type (FT) at a warm desert site in southern New Mexico. PALS-FT predicts soil evaporation and plant transpiration of a canopy composed of five principal plant FTs: annuals, perennial forbs, C4 grasses, sub-shrubs, and evergreen shrubs. For each FT, the fractional contribution to transpiration depends upon phenological activity and cover as well as daily leaf stomatal conductance, which is a function of plant water potential, calculated from root-weighted soil water potential in six soil layers. Simulations of water loss from two plant community types (grass- vs. shrub-dominated) were carried out for the Jornada Basin, New Mexico, using 100 years of daily precipitation data (1891–1990). In order to emphasize variability associated with rainfall and fundamental differences in FT composition between communities, the seasonal patterns cover of perennials were held constant from year to year. Because the relative amount of year to year cover of winter and summer annual species is highly variable in this ecosystem, we examined their influence on model predictions of ET by allowing their cover to be variable, fixed, or absent.Over the entire 100-yr period, total annual ET is highly correlated with total annual rainfall in both community types, although T and E alone are less strongly correlated with rainfall, and variation in transpiration is nearly 3 times greater than evaporation and 2 times greater than variation in rainfall (CV of rainfall = 35%). Water use shows a relatively high similarity between the grass- and shrub-dominated communities, with a 100-yr average T/ET of 34% for both communities. However, based on a year-by-year comparison between communities, T/ET was significantly greater in the grass-dominated community, reflecting the fact that over the long term more than half of the rain occurs in the summer and is used slightly more efficiently (T¿E) by the C4-grass community than the shrub community, although we found some rainfall patterns that resulted in much greater T/ET in the shrub community in a given year. Percent of water lost as transpiration (T/ET) suggests that while there is a general trend toward increased T/ET with rainfall in both community types, T/ET is extremely variable over the 100-yr simulation, especially for normal and below normal amounts of rainfall (T/ET values range from 1 to 58% for the grass-dominated site and 6 to 60% for the shrub-dominated site).These predictions suggest that because of the relatively shallow distribution of soil water, there is little opportunity for vertical partitioning of the soil water resource by differential rooting depths of the plant FTs, in contrast to the two-layer hypothesis of Walter (1971). However, functional types may avoid competition by keying on particular `windows' of moisture availability via differences in phenologies. We found very little differences in average, long-term model predictions of T, E, and ET when annual plant cover was variable, fixed, or absent. The results of our simulations help reconcile some of the disparate conclusions drawn from experimental studies about the relative contribution of transpiration vs. evaporation to total evapotranspiration, primarily by revealing the great year-to-year variability that is possible.  相似文献   

18.
Chalmers  A. G.  Bacon  E. T. G.  Clarke  J. H. 《Plant and Soil》2001,228(2):157-177
The management and effects of 3-year and 5-year set-aside covers on soil mineral nitrogen (SMN, 0.0–0.9 m) were studied at six sites in England. Soil mineral N was measured annually in autumn and spring during the period of set-aside cover, with more frequent SMN sampling over the first winter after ploughing out the covers. Spring SMN was measured in the second year after set-aside. Nitrate leaching losses were also measured at three sites in the first winter after destruction of the 5-year set-aside covers. Winter cereals were grown in both test years after each set-aside period.Amounts of both autumn and spring SMN in the perennial rye-grass (PRG), perennial rye-grass/white clover (PRG/WC) and natural regeneration (NR) covers were generally less than, or similar to those in the continuous arable treatment during each year of set-aside, indicating a slightly smaller nitrate leaching risk under set-aside management. Slight increases in autumn SMN, and hence leaching potential were, however, observed under PRG/WC in the fourth and fifth years, compared with continuous arable cropping.Ploughing out of both 3-year and 5-year covers increased soil N supply and potential nitrate leaching losses over winter, compared with continuous arable cropping. By the following spring, mean increases across all sites in amounts of SMN after 3-year covers of PRG, NR and PRG/WC were 14, 18 and 33 kg ha–1 N, respectively, compared with the arable rotation. Equivalent increases in spring SMN following destruction of the 5-year set-aside covers were almost identical, at 17, 19 and 33 kg ha–1, respectively, although only the ploughed-out PRG/WC covers increased SMN at the clay sites. Measured nitrate leaching losses in the first winter after 5-year set-aside were greatest after PRG/WC at two sites on shallow chalk but greatest after NR, which had a naturally large clover content, at the third site which was on a sandy soil. However, the leaching losses after set-aside were relatively small, relative to typical losses after ploughing out intensively managed grass or grass/clover swards, and would have been compensated for by potentially less leaching during set-aside.Spring SMN measurements in the second year after ploughing out the set-aside covers, showed negligible or, for PRG/WC, only slight increases (12 – 18 kg ha–1) in residual soil N supply after both 3-year and 5-year covers, compared to continuous arable cropping. The extra N mineralisation after cover destruction justified small reductions in fertiliser N inputs for the first, but not second crop following either 3- or 5-year set-aside, unless the cover had contained a large clover content. Both 3-year and 5-year set-aside covers had minimal or no effect on either organic matter content, apart from a slight increase in the PRG/WC treatments, or extractable phosphorus, potassium and magnesium status in the topsoil.  相似文献   

19.
Evapotranspiration (ET) from tropical ecosystems is a major constituent of the global land–atmosphere water flux and strongly influences the global hydrological cycle. Most previous studies of ecosystem ET have been conducted predominantly in tropical forests, and only few observations cover other tropical land-use types such as pastures, croplands, savannas or plantations. The objectives of our study were: (1) to estimate daily, monthly, and annual ET budgets in a tropical pasture and an adjacent afforestation site, (2) to assess diurnal and seasonal patterns of ET, (3) to investigate environmental controls of ET, and (4) to evaluate the soil infiltration potential. We performed eddy covariance measurements of ecosystem ET in Sardinilla (Panama) from 2007 to 2009. Daily ET (2.6 ± 1.0 mm day−1) was significantly lower in the pasture compared to the afforestation site (3.0 ± 0.9 mm day−1). The highest ET was observed during the wet–dry transition period in both ecosystems. However, differences in daily ET between sites were relatively small, particularly during the wet season. Radiation was the main environmental control of ET at both sites, however, we observed considerable seasonal variation in the strength of this control, which was stronger during the wet compared to the dry season. In 2008, total annual ET was only slightly higher for the afforestation (1114 mm y−1) than the pasture site (1034 mm y−1). Our results suggest that afforestation of pasture only marginally increases ecosystem-scale ET 6–8 years after establishment. Differences in soil infiltration potentials between our sites seem to explain this pattern.  相似文献   

20.
Five methods to assess percolation rate from alternative earthen final covers (AEFCs) are described in the context of the precision with which the percolation rate can be estimated: trend analysis, tracer methods, water balance method, Darcy's Law calculations, and lysimetry. Trend evaluation of water content data is the least precise method because it cannot be used alone to assess the percolation rate. The precision of percolation rates estimated using tracer methods depends on the tracer concentration, percolation rate, and the sensitivity of the chemical extraction and analysis methods. Percolation rates determined using the water balance method have a precision of approximately 100 mm/yr in humid climates and 50 mm/yr in semiarid and drier climates, which is too large to demonstrate that an AEFC is meeting typical equivalency criterion (30 mm/yr or less). In most cases, the precision will be much poorer. Percolation rates computed using Darcy's Law with measured profiles of water content and matric suction typically have a precision that is about two orders of magnitude (or more) greater than the computed percolation rate. The Darcy's Law method can only be used for performance assessment if the estimated percolation rate is much smaller than the equivalency criterion and preferential flow is not present. Lysimetry provides the most precise estimates of percolation rate, but the precision depends on the method used to measure the collected water. The lysimeter used in the Alternative Cover Assessment Program (ACAP), which is described in this paper, can be used to estimate percolation rates with a precision between 0.00004 to 0.5 mm/yr, depending on the measurement method and the flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号