首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 310 毫秒
1.
RNA-mediated interference (RNAi) is a method to inhibit gene function by introduction of double-stranded RNA (dsRNA). Recently, an RNAi library was constructed that consists of bacterial clones expressing dsRNA, corresponding to nearly 90% of the 19,427 predicted genes of C. elegans. Feeding of this RNAi library to the standard wild-type laboratory strain Bristol N2 detected phenotypes for approximately 10% of the corresponding genes. To increase the number of genes for which a loss-of-function phenotype can be detected, we undertook a genome-wide RNAi screen using the rrf-3 mutant strain, which we found to be hypersensitive to RNAi. Feeding of the RNAi library to rrf-3 mutants resulted in additional loss-of-function phenotypes for 393 genes, increasing the number of genes with a phenotype by 23%. These additional phenotypes are distributed over different phenotypic classes. We also studied interexperimental variability in RNAi results and found persistent levels of false negatives. In addition, we used the RNAi phenotypes obtained with the genome-wide screens to systematically clone seven existing genetic mutants with visible phenotypes. The genome-wide RNAi screen using rrf-3 significantly increased the functional data on the C. elegans genome. The resulting dataset will be valuable in conjunction with other functional genomics approaches, as well as in other model organisms.  相似文献   

2.
3.
X-linked sideroblastic anemia with ataxia (XLSA/A) is a rare inherited disorder characterized by mild anemia and ataxia. XLSA/A is caused by mutations in the ABCB7 gene, which encodes a member of the ATP-binding cassette transporter family. Studies in yeast, mammalian cells, and mice have shown that ABCB7 functions in the transport of iron-sulfur (Fe-S) clusters into the cytoplasm. To further investigate the mechanism of this disease, we have identified and characterized the Caenorhabditis elegans homologue of the ABCB7 gene, abtm-1. We have studied the function of abtm-1 using mutants and RNAi. abtm-1-depleted animals produce arrested embryos that have morphogenetic defects and unusual premature, putative apoptotic events. abtm-1(RNAi) animals also show accumulation of ferric iron and increased oxidative stress. Despite the increased level of oxidative stress in abtm-1(RNAi) animals, they have an increased life span. We observed accumulation of DAF-16/FOXO in the nuclei of affected animals and elevation of the expression of SOD-3, a well established target of DAF-16, which may explain the increased life span extension of these animals. abtm-1 is strongly expressed in tissues with a high energy demand, and abtm-1(RNAi) animals have phenotypes that reflect the need for abtm-1 in these tissues. Finally, we show that reducing the function of other genes involved in Fe-S cluster production produces similar phenotypic consequences to abtm-1 loss of function. Therefore, ablation of abtm-1 in C. elegans provides a model in which to investigate the mechanism underlying XLSA/A.  相似文献   

4.
RNA interference (RNAi) is a broadly used reverse genetics method in C. elegans. Unfortunately, RNAi does not inhibit all genes. We show that loss of function of a putative RNA-directed RNA polymerase (RdRP) of C. elegans, RRF-3, results in a substantial enhancement of sensitivity to RNAi in diverse tissues. This is particularly striking in the nervous system; neurons that are generally refractory to RNAi in a wild-type genetic background can respond effectively to interference in an rrf-3 mutant background. These data provide the first indication of physiological negative modulation of the RNAi response and implicate an RdRP-related factor in this effect. The rrf-3 strain can be useful to study genes that, in wild-type, do not show a phenotype after RNAi, and it is probably the strain of choice for genome-wide RNAi screens.  相似文献   

5.
In Caenorhabditis elegans, P granules are germline-specific, RNA-containing granules that segregate into the germline precursor cell during early embryogenesis. In this short report, PAN-1, which previously has been found by others in screens for genes causing larval molting defects, is identified here as a novel P-granule component and a binding partner of GLH-1 (Germline RNA Helicase-1), a constitutive, germline-specific, P-granule protein. The PAN-1 predicted protein contains multiple leucine-rich repeats (LRRs) and regions with similarities to F-box proteins. Antibodies raised against PAN-1 reveal it is present both in the soma and the germline. In the germline, PAN-1 uniquely localizes to P granules from the first larval stage onward and is unusual for a P-granule component in lacking recognizable RNA binding motifs. Homozygous pan-1(gk142) deletion worms arrest as larvae that are unable to molt and this phenotype is also seen with pan-1(RNAi) into wild type worms. pan-1(RNAi) into the somatic RNAi-defective strain rrf-1(pk1417) bypasses the larval arrest and allows an assessment of PAN-1 function in the germline. We find pan-1(RNAi) is variably effective in knocking down PAN-1 protein and results in adult progeny that display multiple germline defects. These phenocopies range from under-proliferation of the germline, as also seen with loss of GLH-1, to the induction of endomitotic replication in oocytes, both defects that result in sterility, to fertile animals with significantly reduced progeny numbers. Thus, while loss of PAN-1 in the soma inhibits molting, this report demonstrates that PAN-1 is also a P-granule component that is essential for fertility.  相似文献   

6.
7.
8.
9.
10.
Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major life span regulatory pathway. Here, we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean life span of C. elegans by ~30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity, leading to a more "naive" epigenetic state. Like stem cell reprogramming, our results suggest that reestablishment of epigenetic marks lost during aging might help "reset" the developmental age of animal cells.  相似文献   

11.
12.
Miyata S  Begun J  Troemel ER  Ausubel FM 《Genetics》2008,178(2):903-918
To further understand how the nematode Caenorhabditis elegans defends itself against pathogen attack, we analyzed enhanced pathogen resistance (epr) mutants obtained from a forward genetic screen. We also examined several well-characterized sterile mutants that exhibit an Epr phenotype. We found that sterility and pathogen resistance are highly correlated and that resistance in both epr and sterile mutants is dependent on DAF-16 activity. Our data indicate that a DAF-16-dependent signaling pathway distinct from previously described pathways is involved in the activation of genes that confer resistance to bacterial pathogens. The timing of DAF-16-dependent gene activation in sterile mutants coincides with the onset of embryonic development in wild-type animals, suggesting that signals from developing embryos normally downregulate the immune response.  相似文献   

13.
Ceramide glucosyltransferase (Ugcg) [uridine diphosphate (UDP)-glucose:N-acylsphingosine D-glucosyltransferase or UDP-glucose ceramide glucosyltransferase (GlcT): EC 2.4.1.80] catalyzes formation of glucosylceramide (GlcCer) from ceramide and UDP-glucose. There is only one Ugcg gene in the mouse genome, which is essential in embryogenesis and brain development. The nematode Caenorhabditis elegans has three Ugcg genes (cgt-1, cgt-2 and cgt-3), and double RNAi of the cgt-1 and cgt-3 genes results in lethality at the L1 larval stage. In this study, we isolated knockout worms for the three genes and characterized the gene functions. Each gene product showed active enzymatic activity when expressed in GM95 cells deficient in glycosphingolipids (GSLs). When each gene function was disrupted, the brood size of the animal markedly decreased, and abnormal oocytes and multinucleated embryos were formed. The CGT-3 protein had the highest Ugcg activity, and knockout of its gene resulted in the severest phenotype. When cgt-3 RNAi was performed on rrf-1 worms lacking somatic RNAi machinery but with intact germline RNAi machinery, a number of abnormal oocytes and multinucleated eggs were observed, although the somatic phenotype, i.e., L1 lethal effects of cgt-1/cgt-3 RNAi, was completely suppressed. Cell surface expression of GSLs and sphingomyelin, which are important components of membrane domains, was affected in the RNAi-treated embryos. In the embryos, an abnormality in cytokinesis was also observed. From these results, we concluded that the Ugcg gene is indispensable in the germline and that an ample supply of GlcCer is needed for oocytes and fertilized eggs to maintain normal membranes and to proceed through the normal cell cycle.  相似文献   

14.
15.
16.
17.
18.
McElwee J  Bubb K  Thomas JH 《Aging cell》2003,2(2):111-121
  相似文献   

19.
20.
We performed a genome-wide analysis of gene expression in C. elegans to identify germline- and sex-regulated genes. Using mutants that cause defects in germ cell proliferation or gametogenesis, we identified sets of genes with germline-enriched expression in either hermaphrodites or males, or in both sexes. Additionally, we compared gene expression profiles between males and hermaphrodites lacking germline tissue to define genes with sex-biased expression in terminally differentiated somatic tissues. Cross-referencing hermaphrodite germline and somatic gene sets with in situ hybridization data demonstrates that the vast majority of these genes have appropriate spatial expression patterns. Additionally, we examined gene expression at multiple times during wild-type germline development to define temporal expression profiles for these genes. Sex- and germline-regulated genes have a non-random distribution in the genome, with especially strong biases for and against the X chromosome. Comparison with data from large-scale RNAi screens demonstrates that genes expressed in the oogenic germline display visible phenotypes more frequently than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号