首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

2.
NADH-photosensitized in vitro formation of single-stranded breaks in plasmid DNA pBR322 depends on both the concentration of the sensitizer and the influence of near-UV radiation (320-400 nm). Scavengers and inhibitors of different activated oxygen species (sodium azide, sodium benzoate, catalase and superoxide dismutase) prevent the formation of breaks in full or partly. The data obtained show that hydroxyl radical (.OH) and singlet oxygen (1O2) are directly involved in the induction of breaks. In this process hydrogen peroxide (H2O2) plays the role of an intermediate in the reaction of .OH formation from superoxide anion-radical (O2-.) which is the first NAD.H-photogenerated product.  相似文献   

3.
Administration of selenium in humans has anticarcinogenic effects. However, the boundary between cancer-protecting and toxic levels of selenium is extremely narrow. The mechanisms of selenium toxicity need to be fully understood. In Saccharomyces cerevisiae, selenite in the millimolar range is well tolerated by cells. Here we show that the lethal dose of selenite is reduced to the micromolar range by the presence of thiols in the growth medium. Glutathione and selenite spontaneously react to produce several selenium-containing compounds (selenodiglutathione, glutathioselenol, hydrogen selenide, and elemental selenium) as well as reactive oxygen species. We studied which compounds in the reaction pathway between glutathione and sodium selenite are responsible for this toxicity. Involvement of selenodiglutathione, elemental selenium, or reactive oxygen species could be ruled out. In contrast, extracellular formation of hydrogen selenide can fully explain the exacerbation of selenite toxicity by thiols. Indeed, direct production of hydrogen selenide with D-cysteine desulfhydrase induces high mortality. Selenium uptake by S. cerevisiae is considerably enhanced in the presence of external thiols, most likely through internalization of hydrogen selenide. Finally, we discuss the possibility that selenium exerts its toxicity through consumption of intracellular reduced glutathione, thus leading to severe oxidative stress.  相似文献   

4.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

5.
Phage DNA, as well as plasmid and mammalian DNA's, were exposed to a superoxide and hydroxyl radical-generating system containing NADPH-cytochrome P-450 reductase and mitomycin C, both with and without added Fe3+-ADP, in phosphate buffer at pH 7.5. The generation of superoxide (O2-.) and hydroxyl (.OH) radicals in the system was demonstrated by using ESR spectrometry with N-tert -butyl-alpha-phenylnitrone (PBN) as a spin trapping agent. Only the lambda DNA isolated after exposure to the O2-./.OH-generating system containing many lower molecular weight DNA fragments indicating DNA strand breaks. This breakage was completely inhibited by a .OH radical scavenger (sodium benzoate) and by catalase, but only slightly by superoxide dismutase. Thyroid and plasmid DNA's were both cleaved when exposed to the O2-./.OH-generating systems. It is suggested that the mechanism of DNA scission by mitomycin C described here closely resembles that induced by the anthracycline drugs.  相似文献   

6.
Double-strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint-mediated cell-cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1- and Tel1-dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1- and Tel1-dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2-mediated inhibition of MRX signalling.  相似文献   

7.
Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Selenium (Se) is an essential trace element for humans, animals and some bacteria which is important for many cellular processes. Se's bio-activity is mainly influenced by its chemical form and dose. The use of Se supplements in the human diet emphasizes the need to establish both the beneficial and detrimental doses of each Se compound. We have evaluated three different Se compounds, sodium selenite (SeL), selenomethionine (SeM) and Se-methylselenocysteine (SeMC), with respect to their potential DNA damaging effects. The budding yeast Saccharomyces cerevisiae was used as a model system to test the toxic and mutagenic effects as well as the DNA double-strand breakage potency of these Se compounds in both exponentially growing and stationary yeast cells. Only SeL manifested any significant toxic effects in the yeast which were more pronounced in the exponentially growing cells than in those cells in the stationary phase of growth. The toxic effects of SeL were however accompanied with the pro-mutagenic effects in the stationary cell phase of growth. The toxic and mutagenic effects of SeL are likely associated with the ability of this compound to generate DNA double-strand breaks (DSB). We also show that SeL significantly increased frame-shift mutations, especially 1-4 bp deletions, in the CAN1 mutational spectrum of the yeast genome when compared to untreated control. We propose that SeL is acting as an oxidizing agent in S. cerevisiae producing superoxide and oxidative damage to DNA accounting for the observed DSB and cell death.  相似文献   

8.
Diquat is a hepatotoxin whose toxicity in vivo and in vitro is mediated by redox cycling and greatly enhanced by pretreatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. The mechanism by which redox cycling mediates diquat cytotoxicity is unclear, however. Here, we have attempted to examine the roles of three potential products of redox cycling, namely superoxide anion radical (O2-.), hydrogen peroxide (H2O2), and hydroxyl radical (.OH), in the toxicity of diquat to BCNU-treated isolated hepatocytes. Addition of high concentrations of catalase, but not superoxide dismutase, to the incubations provided some protection against the toxic effect of diquat, but much better protection was observed when catalase was added in combination with the iron chelator desferrioxamine. Addition of desferrioxamine alone also provided considerable protection, whereas the addition of copper ions enhanced diquat cytotoxicity. Taken together, these results indicate that both H2O2 and the transition metals iron and copper could play major roles in the cytotoxicity of diquat. The role of O2-. remains less clear, however, but studies with diethylenetriaminepentaacetic acid indicate that O2-. is unlikely to significantly contribute to the reduction of Fe3+ to Fe2+. The hydroxyl radical or a related species seems the most likely ultimate toxic product of the H2O2/Fe2+ interaction, but hydroxyl radical scavengers afforded only minimal protection.  相似文献   

9.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

10.
Protective effects of vitamins and selenium compounds in yeast   总被引:7,自引:0,他引:7  
Antimutagens and anticarcinogens are known to play an important role in decreasing damages induced by oxidants. In this study, we investigated the genotoxic and antimutagenic potential of two selenium compounds (sodium selenite: Na(2)SeO(3); seleno-DL-methionine: C(5)H(11)NO(2)Se) and Vitamins A and E in yeast cells of Saccharomyces cerevisiae. An oxidative mutagen (hydrogen peroxide (H(2)O(2)), HP) was chosen as positive control. We determined the enzymatic activities involved in the protection against oxidative damages (catalase: CAT; superoxide dismutase: SOD; glutathione peroxidase: GPx) in the cytosolic extract of yeast cells. The results demonstrated that selenium compounds exerted both mutagenic and antimutagenic effect at different concentrations. Antimutagenesis was evident both in stationary and in logarithmic phase cells. Catalase, SOD, and GPx were significantly increased in the presence of all the compounds assayed. Vitamins A (retinol) and E (alpha-tocopherol) did not have toxic or mutagenic action.  相似文献   

11.
The present study was aimed at determining the oxidative damage caused by sodium arsenite in 3T3 fibroblast cells and the possible protective role of curcumin (Cur) against sodium arsenite toxicity. Embryonic fibroblast cells were exposed to sodium arsenite (0.01, 0.1, 1, and 10 μM) in the presence and absence of Cur (2.5 μM) for 24 hours. Cell viability, cytotoxicity, lipid peroxidation, hydroxyl radical, hydrogen peroxide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase) and expression levels of antioxidant genes (superoxide dismutase, catalase, and glutathione peroxidase) were measured in embryonic fibroblast cells. Results demonstrated that sodium arsenite directly affects antioxidant enzymes and genes in 3T3 embryonic fibroblast cells and induces oxidative damage by increasing the amount of hydrogen peroxide, hydroxyl radical, and lipid peroxidation in the cell. Furthermore, the study indicated that Cur might be a potential ameliorative antioxidant to protect the fibroblast cell toxicity induced by sodium arsenite.  相似文献   

12.
Two species of free-living nematodes, Turbatrix aceti and Caenorhabditis elegans, exhibited a marked sensitivity to 3 atm of 100% O2. Environmental changes in pH and temperature, which altered nematode respiration, resulted in alterations in the survival of these organisms under high pO2. Levels of defensive enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and dianisidine peroxidase were measured in the two species. No changes in the level of superoxide dismutase or catalase activity were induced by exposure of the nematodes to high pO2. Manipulation of these two enzymes was however achieved using the inhibitors 3-amino-1,2,4-triazole and diethyldithiocarbamate. 3-Amino-1,2,4-triazole (20 mM) eliminated greater than or equal to 80% of the catalase activity in vivo and diethyldithiocarbamate (5 mM) decreased the level of CuZn superoxide dismutase by greater than or equal to 70%. Both of these compounds increased the sensitivity of C. elegans to high pO2 toxicity. Compounds capable of intracellular redox-cycling with O2- -production, such as plumbagin, increased CN- -resistant respiration in the nematodes and imposed an O2-dependent toxicity. These experiments demonstrate the toxicity of intracellular O2- and H2O2 in nematodes and the importance of superoxide dismutase and catalase in providing a defense against these toxic molecules in vivo.  相似文献   

13.
It has been shown that NADH photosensitize in vitro single-strand breaks formation in double-strand plasmid DNA pBR 322 upon near-UV (320-400 nm) irradiation. The number of single-strand breaks depends both on UV light dose and sensitizer concentration. Addition of catalase and sodium benzoate strongly decreases the single-strand breaks formation. The results show an important role of hydrogen peroxide (H2O2) and hydroxyl radical (.OH) in inducing single-strand breaks in plasmid DNA irradiated by near-UV radiation in the presence of NADH.  相似文献   

14.
Cadmium (Cd) is one of the most toxic heavy metals that are widespread in inshore sediments of China, and can induce the production of toxic hydroxyl radicals that cause cell damage. The present study investigated the effect of two Cd concentrations (the final Cd concentration of 0.025 and 0.05 mg/L, prepared with CdCl2 x 2.5H2O) on metallothioneins (MT), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and DNA integrity (DNA strand breaks) for up to 15 days in the gills and hepatopancreas of the portunid crab Charybdis japonica. The result indicated that MT was significantly induced after 3 days, with a dose-response relation between MT contents and Cd concentrations in two tissues and has a time-response relation in hepatopancreas during the experimental period; SOD, CAT and GPx activities could be stimulated after 0.5 day, all attained peak value and then reduced during the experimental period, but were not inhibited at day 15, except SOD and CAT in gills. Gill was more sensitive to Cd than hepatopancreas, and the hepatopancreas was the main detoxification tissue to deal with oxyradicals. DNA strand breaks were induced after 0.5 day, and there was a positive dose-response relation between DNA damage levels and Cd concentrations in gills, rather than hepatopancreas due to higher DNA repair activities. These results suggest the mechanisms of Cd toxicity and detoxification strategies in both tissues of C. japonica; in addition, the use of the biomarkers as indices for biomonitoring potential toxic effect of Cd in situ is discussed.  相似文献   

15.
Reactive oxygen species modify DNA, generating various DNA lesions including modified bases such as 8-oxoguanine (8-oxoG). These base-modified DNA lesions have been shown to trap DNA topoisomerase I (TOP1) into covalent cleavage complexes. In this study, we have investigated the role of TOP1 in hydrogen peroxide toxicity. We showed that ectopic expression of TOP1 in Saccharomyces cerevisiae conferred sensitivity to hydrogen peroxide, and this sensitivity was dependent on RAD9 checkpoint function. Moreover, in the mammalian cell culture system, hydrogen peroxide-induced growth inhibition and apoptosis were shown to be partly TOP1-dependent as evidenced by a specific increase in resistance to hydrogen peroxide in TOP1-deficient P388/CPT45 murine leukemia cells as compared with their TOP1-proficient parental cell line P388. In addition, hydrogen peroxide was shown to induce TOP1-DNA cross-links. These results support a model in which hydrogen peroxide promotes the trapping of TOP1 on oxidative DNA lesions to form TOP1-DNA cleavage complexes that contribute to hydrogen peroxide toxicity.  相似文献   

16.
We have shown, in a preliminary report, that macrophages can induce strand breaks in the DNA of co-cultured tumor cells (Chong et al., 1988). The present study is designed to determine if oxygen-centered species generated by the cell-free enzyme-substrate combination of hypoxanthine and xanthine oxidase can induce similar lesions and to identify the specific mediator(s). We report that co-incubation of murine mammary tumor cell lines with hypoxanthine and xanthine oxidase leads to the induction of DNA-strand breaks as determined by fluorescence analysis of DNA unwinding (FADU) assay or alkaline elution techniques. This damage is preventable by catalase which removes hydrogen peroxide but no protection is provided by agents to remove or prevent the formation of superoxide anion (superoxide dismutase), or hydroxyl radical (mannitol or the iron chelator o-phenanthroline). Likewise, cyclooxygenase or lipoxygenase inhibitors of arachidonate metabolism (indomethacin, nordihydroguaiaretic acid, caffeic acid) or bromophenacyl bromide do not alter the degree of DNA scission. Treatment with higher doses of oxygen species leads to significant toxicity as determined by evaluation of cell growth potential or colony-forming ability. Again, toxicity is prevented only by the presence of catalase. Tumor cells are able to rejoin strand breaks at lower, less toxic doses. When comparing different tumor cell subpopulations at various stages of progression, i.e., metastatic vs. nonmetastatic, for sensitivity to hydrogen peroxide-induced strand breakage, we found that at lower concentrations (less than 5μM) metastatic populations are sensitive whereas nonmetastatic populations exhibit no significant breakage. At higher concentrations of hydrogen peroxide, all lines were sensitive, suggesting that a lower threshold of sensitivity may exist for more progressed tumour cell lines.  相似文献   

17.
Unrepaired DNA double-strand breaks (DSBs) typically result in G(2) arrest. Cell cycle progression can resume following repair of the DSBs or through adaptation to the checkpoint, even if the damage remains unrepaired. We developed a screen for factors in the yeast Saccharomyces cerevisiae that affect checkpoint control and/or viability in response to a single, unrepairable DSB that is induced by HO endonuclease in a dispensable yeast artificial chromosome containing human DNA. SIR2, -3, or -4 mutants exhibit a prolonged, RAD9-dependent G(2) arrest in response to the unrepairable DSB followed by a slow adaptation to the persistent break, leading to division and rearrest in the next G(2). There are a small number of additional cycles before permanent arrest as microcolonies. Thus, SIR genes, which repress silent mating type gene expression, are required for the adaptation and the prevention of indirect lethality resulting from an unrepairable DSB in nonessential DNA. Rapid adaptation to the G(2) checkpoint and high viability were restored in sir(-) strains containing additional deletions of the silent mating type loci HML and HMR, suggesting that genes under mating type control can reduce the toleration of a single DSB. However, coexpression of MATa1 and MATalpha2 in Sir(+) haploid cells did not lead to lethality from the HO-induced DSB, suggesting that toleration of an unrepaired DSB requires more than one Sir(+) function.  相似文献   

18.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

19.
Selenium (Se), a micronutrient, has a long history in chemoprevention of mammary and colon cancers in rodent models. Se is a current clinical trial, having shown promise in prevention of prostate and other human cancers. The mechanisms involved in the in vivo anti-carcinogenic activity of Se remain to be elucidated. In the present study, we examined the effect of sodium selenite supplementation in lymphocytes, obtained from hepatoma bearing rats on DNA damage in correlation with oxidative stress. In addition, this study examined the supplementation of Se at 4-ppm levels in the form of sodium selenite either before initiation or during initiation and/or promotion phase's increases lymphocyte Se concentrations. This in turn improves lymphocyte resistance to oxidative stress and protection against the lymphocytes DNA damage. Supplementation of Se increased lymphocyte Se concentration and reduced lymphocytes DNA damage as determined by single cell gel electrophoresis. The enzymatic antioxidants such as superoxide dismutase, glutathione peroxidase, and catalase were found to be decreased while the thiobarbituric acid reactive substances level was increased in the lymphocytes of hepatoma bearing rats. Furthermore, the reactive oxygen species such as superoxide radicals and hydroxyl radicals were also found to be high in lymphocytes. Our present results explain the understanding of unique association between anti-peroxidative effect of Se and ultimately the capability of Se to prevent cancer.  相似文献   

20.
When DNA is damaged or DNA replication goes awry, cells activate checkpoints to allow time for damage to be repaired and replication to complete. In Saccharomyces cerevisiae, the DNA damage checkpoint, which responds to lesions such as double-strand breaks, is activated when the lesion promotes the association of the sensor kinase Mec1 and its targeting subunit Ddc2 with its activators Ddc1 (a member of the 9-1-1 complex) and Dpb11. It has been more difficult to determine what role these Mec1 activators play in the replication checkpoint, which recognizes stalled replication forks, since Dpb11 has a separate role in DNA replication itself. Therefore we constructed an in vivo replication-checkpoint mimic that recapitulates Mec1-dependent phosphorylation of the effector kinase Rad53, a crucial step in checkpoint activation. In the endogenous replication checkpoint, Mec1 phosphorylation of Rad53 requires Mrc1, a replisome component. The replication-checkpoint mimic requires colocalization of Mrc1-LacI and Ddc2-LacI and is independent of both Ddc1 and Dpb11. We show that these activators are also dispensable for Mec1 activity and cell survival in the endogenous replication checkpoint but that Ddc1 is absolutely required in the absence of Mrc1. We propose that colocalization of Mrc1 and Mec1 is the minimal signal required to activate the replication checkpoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号