首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice.

Methods

Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9–10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation.

Results

Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice.

Conclusions

Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.  相似文献   

3.
Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the GLA gene that result in deficiency of the enzyme alpha-galactosidase A. The worldwide incidence of Fabry’s disease is reported to be in the range of 1 in 40,000–117,000, although this value may be a significant underestimate given under recognition of symptoms and delayed or missed diagnosis. Deficiency in alpha-galactosidase A causes an accumulation of neutral glycosphingolipids such as globotriaosylceramide (Gb3) in lysosomes within various tissues including the vascular endothelium, kidneys, heart, eyes, skin and nervous system. Gb3 accumulation induces pathology via the release of pro-inflammatory cytokines, growth-promoting factors and by oxidative stress, resulting in myocardial extracellular matrix remodelling, left ventricular hypertrophy (LVH), vascular dysfunction and interstitial fibrosis. Cardiac involvement manifesting as ventricular hypertrophy, systolic and diastolic dysfunction, valvular abnormalities and conduction tissue disease is common in AFD and is associated with considerable cardiovascular morbidity and mortality from heart failure, sudden cardiac death and stroke-related death.  相似文献   

4.
Fabry disease is an inborn error of glycosphingolipid metabolism caused by the deficiency of lysosomal alpha-galactosidase A (alpha-Gal A). We have established transgenic mice that exclusively express human mutant alpha-Gal A (R301Q) in an alpha-Gal A knock-out background (TgM/KO mice). This serves as a biochemical model to study and evaluate active-site specific chaperone (ASSC) therapy for Fabry disease, which is specific for those missense mutations that cause misfolding of alpha-Gal A. The alpha-Gal A activities in the heart, kidney, spleen, and liver of homozygous TgM/KO mice were 52.6, 9.9, 29.6 and 44.4 unit/mg protein, respectively, corresponding to 16.4-, 0.8-, 0.6- and 1.4-fold of the endogenous enzyme activities in the same tissues of non-transgenic mice with a similar genetic background. Oral administration of 1-deoxygalactonojirimycin (DGJ), a competitive inhibitor of alpha-Gal A and an effective ASSC for Fabry disease, at 0.05 mM in the drinking water of the mice for 2 weeks resulted in 13.8-, 3.3-, 3.9-, and 2.6-fold increases in enzyme activities in the heart, kidney, spleen and liver, respectively. No accumulation of globotriaosylceramide, a natural substrate of alpha-Gal A, could be detected in the heart of TgM/KO mice after DGJ treatment, indicating that degradation of the glycolipid in the heart was not inhibited by DGJ at that dosage. The alpha-Gal A activity in homozygous or heterozygous fibroblasts established from TgM/KO mice (TMK cells) was approximately 39 and 20 unit/mg protein, respectively. These TgM/KO mice and TMK cells are useful tools for studying the mechanism of ASSC therapy, and for screening ASSCs for Fabry disease.  相似文献   

5.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

6.
Although nitric oxide synthase (NOS)3 is implicated as an important modulator of left ventricular (LV) remodeling, its role in the cardiac response to chronic pressure overload is controversial. We examined whether selective restoration of NOS3 to the hearts of NOS3-deficient mice would modulate the LV remodeling response to transverse aortic constriction (TAC). LV structure and function were compared at baseline and after TAC in NOS3-deficient (NOS3(-/-)) mice and NOS3(-/-) mice carrying a transgene directing NOS3 expression specifically in cardiomyocytes (NOS3(-/-TG) mice). At baseline, echocardiographic assessment of LV dimensions and function, invasive hemodynamic measurements, LV mass, and myocyte width did not differ between the two genotypes. Four weeks after TAC, echocardiographic and hemodynamic indexes of LV systolic function indicated that contractile performance was better preserved in NOS3(-/-TG) mice than in NOS3(-/-) mice. Echocardiographic LV wall thickness and cardiomyocyte width were greater in NOS3(-/-) mice than in NOS3(-/-TG) mice. TAC-induced cardiac fibrosis did not differ between these genotypes. TAC increased cardiac superoxide generation in NOS3(-/-TG) but not NOS3(-/-) mice. The ratio of NOS3 dimers to monomers did not differ before and after TAC in NOS3(-/-TG) mice. Restoration of NOS3 to the heart of NOS3-deficient mice attenuates LV hypertrophy and dysfunction after TAC, suggesting that NOS3 protects against the adverse LV remodeling induced by prolonged pressure overload.  相似文献   

7.
Left ventricular hypertrophy (LVH) is a risk factor for cardiovascular disease, a leading cause of death. Alterations in endothelial nitric oxide synthase (eNOS), an enzyme involved in regulating vascular tone, and in adiponectin, an adipocyte‐derived secretory factor, are associated with cardiac remodeling. Deficiency of eNOS is associated with hypertension and LVH. Adiponectin exhibits vaso‐protective, anti‐inflammatory, and anti‐atherogenic properties. We hypothesized that increased levels of adiponectin would alleviate cardiac pathology resulting from eNOS deficiency, while decreased levels of adiponectin would exacerbate the pathology. Male and female mice, deficient in eNOS, and either lacking or over‐expressing adiponectin, were fed high fat diet (HFD) or normal chow. Cardiac magnetic resonance imaging was performed to serially assess heart morphology and function up to 40 weeks of age. Thirty‐two weeks of HFD feeding led to significantly greater LV mass in male mice deficient in eNOS and either lacking or over‐expressing adiponectin. Heart function was significantly reduced when the mice were deficient in either eNOS, adiponectin or both eNOS and adiponectin; for female mice, heart function was only reduced when both eNOS and adiponectin were lacking. Thus, while over‐expression of adiponectin in the eNOS deficient HFD fed male mice preserved function at the expense of significantly increased LV mass, female mice were protected from decreased function and increased LVH by over‐expression of adiponectin. Our results demonstrate a sexual dimorphism in response of the heart to alterations in eNOS and adiponectin during high fat feeding and suggest that adiponectin might require eNOS for some of its metabolic effects. J. Cell. Biochem. 113: 3276–3287, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Enzyme replacement therapy of fabry disease   总被引:3,自引:0,他引:3  
Fabry disease is an X-linked lysosomal storage disease caused by deficiency of the enzyme α-galactosidase A and results in pain, progressive renal impairment, cardiomyopathy, and cerebrovascular disease. The results of two major randomized, double-blind, placebo-controlled clinical trials and open-label extensions have shown that replacement of the deficient enzyme with either of two preparations of recombinant human α-galactosidase A, agalsidase-alfa, and agalsidase-beta is safe. Biweekly IV infusions of 0.2 mg/kg of agalsidase-alfa were associated with a significant decrease in pain and stabilization of renal function. Biweekly infusions of 1 mg/kg of agalsidase-beta were associated with virtually complete clearing of accumulated glycolipid substrate from renal and cutaneous capillary endothelial cells. Several smaller, open-label studies, along with observations made in the course of monitoring large numbers of patients on enzyme replacement therapy, indicated that treatment stabilizes renal function and produces significant improvements in myocardial mass and function. Treatment of Fabry disease by enzyme replacement has a significant impact on at least some serious complications of the disease.  相似文献   

9.
Transforming growth factor-β family cytokines have diverse actions in the maintenance of cardiac homeostasis. Follistatin-like 3 (Fstl3) is an extracellular regulator of certain TGF-β family members, including activin A. The aim of this study was to examine the role of Fstl3 in cardiac hypertrophy. Cardiac myocyte-specific Fstl3 knock-out (KO) mice and control mice were subjected to pressure overload induced by transverse aortic constriction (TAC). Cardiac hypertrophy was assessed by echocardiography and histological and biochemical methods. KO mice showed reduced cardiac hypertrophy, pulmonary congestion, concentric LV wall thickness, LV dilatation, and LV systolic dysfunction after TAC compared with control mice. KO mice displayed attenuated increases in cardiomyocyte cell surface area and interstitial fibrosis following pressure overload. Although activin A was similarly up-regulated in KO and control mice after TAC, a significant increase in Smad2 phosphorylation only occurred in KO mice. Knockdown of Fstl3 in cultured cardiomyocytes inhibited PE-induced cardiac hypertrophy. Conversely, adenovirus-mediated Fstl3 overexpression blocked the inhibitory action of activin A on hypertrophy and Smad2 activation. Transduction with Smad7, a negative regulator of Smad2 signaling, blocked the antihypertrophic actions of activin A stimulation or Fstl3 ablation. These findings identify Fstl3 as a stress-induced regulator of hypertrophy that controls myocyte size via regulation of Smad signaling.  相似文献   

10.
11.
Fabry disease (FD, OMIM 301500) is an X-linked inherited disorder of metabolism due to mutations in the gene encoding alpha-galactosidase A, a lysosomal enzyme. The enzymatic defect leads to the accumulation of neutral glycosphingolipids throughout the body, particularly within endothelial cells. Resulting narrowing and tortuosity of small blood vessels with endothelial dysfunction lead to tissue ischaemia and infarction. Inability to prevent the progression of glycosphingolipid deposition causes significant morbidity and mortality from early onset strokes, cardiomyopathy and renal failure in adulthood. Medical management is symptomatic and consists of partial pain relief with analgesic drugs (gabapentin, carbamazepine), antihypertensive drugs, whereas renal transplantation or dialysis is available for patients experiencing end-stage renal failure. However, the ability to produce high doses of alpha-galactosidase A in vitro has opened the way to preclinical studies in the mouse model, and to the development of the first clinical trials in patients with Fabry disease. Enzyme replacement therapy has recently been validated as a therapeutic agent for Fabry disease patients. Long term safety and efficacy of replacement therapy are currently being investigated. Substrate deprivation and gene therapy may also prove future alternative therapeutic options.  相似文献   

12.
BACKGROUND: Matrix metalloproteinases (MMPs) play an important role in myocardial remodeling. Their activity is regulated by the tissue inhibitors of metalloproteinases (TIMPs). The present study analyzed the contribution of changes in functional and molecular parameters to early cardiac remodeling in mice hearts. The role that TIMPs might play in this process was specially acknowledged. METHODS: The remodeling was induced by norepinephrine (NE) given sc in balb/c mice. Varying concentrations, time and the addition of a neutralizing TIMP-1 antibody were evaluated. RESULTS: High dose NE led to insufficiency of the left ventricle (LV) as evidenced by reduced NE-induced elevation of LV systolic pressure, contractility and relaxation. Further, signs of lung congestion were seen. NE induced a concentration-dependent increase of LV weight/body weight (LVW/BW) ratio and elevated mRNA expression of atrial natriuretic peptide (ANP). This was accompanied by induction of collagen type I and III, as well as TIMP-1 expression. CONCLUSIONS: The NE-induced increase of TIMP-1 expression may induce the elevation of the antihypertrophic cardiac factor ANP since NE-induced increase of ANP expression was abolished by neutralizing TIMP-1 antibody. Thus, TIMP-1 may mediate ANP-induced attenuation of NE-induced hypertrophy in the mouse heart.  相似文献   

13.
Fabry disease is an X-linked lysosomal disorder characterized by deficient alpha-galactosidase A activity and intracellular accumulations of glycosphingolipids, mainly globotriaosylceramide (Gb3). Clinically, patients occasionally present CNS dysfunction. To examine the pathophysiology underlying brain dysfunction, we examined glucose utilization (CMR(glc)) and cerebral blood flow (CBF) globally and locally in 18 brain structures in the alpha-galactosidase A gene knockout mouse. Global CMR(glc) was statistically significantly reduced by 22% in Fabry mice (p < 0.01). All 18 structures showed decreases in local CMR(glc) ranging from 14% to 33%. The decreases in all structures of the diencephalon, caudate-putamen, brain stem, and cerebellar cortex were statistically significant (p < 0.05). Global cerebral blood flow (CBF) and local CBF measured in the same 18 structures were lower in Fabry mice than in control mice, but none statistically significantly. Histological examination of brain revealed no cerebral infarcts but abundant Gb3 deposits in the walls of the cerebral vessels with neuronal deposits localized to the medulla oblongata. These results indicate an impairment in cerebral energy metabolism in the Fabry mice, but one not necessarily due to circulatory insufficiency.  相似文献   

14.
The synthesis and processing of the human lysosomal enzyme alpha-galactosidase A was examined in normal and Fabry fibroblasts. In normal cells, alpha-galactosidase A was synthesized as an Mr = 50,500 precursor, which contained phosphate groups in oligosaccharide chains cleavable by endoglucosaminidase H. The precursor was processed via ill-defined intermediates to a mature Mr 46,000 form. Processing was complete within 3-7 days after synthesis. In the presence of NH4Cl and in I-cell fibroblasts, the majority of newly synthesized alpha-galactosidase A was secreted as an Mr = 52,000 form. For comparison, the processing and stability of alpha-galactosidase A were examined in fibroblasts from five unrelated patients with Fabry disease, which is caused by deficient alpha-galactosidase A activity. In one cell line, synthesis of immunologically cross-reacting polypeptides was not detectable. In another, the synthesis, processing, and stability of alpha-galactosidase A was indistinguishable from that in normal fibroblasts. In a third Fabry cell line, the mutation retarded the maturation of alpha-galactosidase A. Finally, in two cell lines, alpha-galactosidase A polypeptides were synthesized that were rapidly degraded following delivery to lysosomes. These results clearly indicate that Fabry disease comprises a heterogeneous group of mutations affecting synthesis, processing, and stability of alpha-galactosidase A.  相似文献   

15.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

16.

Background

Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure.

Methods

MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10).

Results

Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05).

Conclusions

Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.  相似文献   

17.
We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after transverse aortic constriction (TAC) and if this effect could be attenuated by treatment with the antioxidant tempol. Immediately after surgery, TAC and sham mice were assigned to a high-starch diet (58% of total energy intake as cornstarch and 10% fat) or high-fructose diet (61% fructose and 10% fat) with or without the addition of tempol [0.1% (wt/wt) in the chow] and maintained on the treatment for 8 wk. In response to TAC, fructose-fed mice had greater cardiac hypertrophy (55.1% increase in the heart weight-to-tibia length ratio) than starch-fed mice (22.3% increase in the heart weight-to-tibia length ratio). Treatment with tempol significantly attenuated cardiac hypertrophy in fructose-fed TAC mice (18.3% increase in the heart weight-to-tibia ratio). Similarly, fructose-fed TAC mice had a decreased LV area of fractional shortening (from 38+/-2% in sham to 22+/-4% in TAC), which was prevented by tempol treatment (33+/-3%). Markers of lipid peroxidation in fructose-fed TAC hearts were also blunted by tempol. In conclusion, tempol significantly blunted markers of cardiac hypertrophy, LV remodeling, contractile dysfunction, and oxidative stress in fructose-fed TAC mice.  相似文献   

18.
Tetracycline is a powerful tool for controlling the expression of specific transgenes (TGs) in various tissues, including heart. In these mouse systems, TG expression is repressed/enhanced by adding doxycycline (Dox) to the diet. However, Dox has been shown to attenuate matrix metalloproteinase (MMP) expression and activity in various tissues, and MMP inactivation mitigates left ventricular (LV) remodeling in animal models of heart failure. Therefore, we examined the influence of Dox on LV remodeling and MMP expression in mice after transverse aortic constriction (TAC). One month after TAC, cardiac hypertrophy (99% vs. 67%) and the proportion of mice exhibiting congestive heart failure (CHF, 74% vs. 32%) were higher in the TAC + Dox group than in the TAC group (P < 0.05). These differences were no longer seen 2 mo after TAC, although LV was more severely dilated in TAC + Dox mice than in TAC mice (P < 0.05). One month after TAC, the increase in brain natriuretic peptide and beta-myosin heavy chain mRNA levels was 1.6 and 1.7 times higher, respectively, in TAC + Dox mice than in TAC mice (P < 0.01). MMP-2 gelatin zymographic activity increased 1.9- and 2.4-fold in TAC and TAC + Dox mice, respectively (P < 0.01 and P < 0.05 relative to respective sham-operated animals), but the difference between TAC + Dox and TAC mice did not reach statistical significance. Dox did not significantly alter TAC-associated perivascular and interstitial myocardial fibrosis. These findings demonstrate that Dox accelerates the onset of cardiac hypertrophy and the progression to CHF following TAC in mice. Accordingly, care should be taken when designing and interpreting studies based on TG mouse models of LV hypertrophy using the tetracycline-regulated (tet)-on/tet-off system.  相似文献   

19.
Epidemiological studies indicate that obesity, insulin resistance, and diabetes are important comorbidities of patients with ischemic heart disease and increase mortality and development of congestive heart failure after myocardial infarction. Although ob/ob and db/db mice are commonly used to study obesity with insulin resistance or diabetes, mutations in the leptin gene or its receptor are rarely the cause of obesity in humans, which is, instead, primarily a consequence of dietary and lifestyle factors. Therefore, we used a murine model of diet-induced obesity to examine the physiological effects of obesity and the inflammatory and healing response of diet-induced obese (DIO) mice after myocardial ischemia-reperfusion injury. DIO mice developed hyperinsulinemia and insulin resistance and hepatic steatosis, with significant ectopic lipid deposition in the heart and cardiac hypertrophy in the absence of significant changes in blood pressure. The mRNA levels of chemokines at 24 h and cytokines at 24 and 72 h of reperfusion were higher in DIO than in lean mice. In granulation tissue at 72 h of reperfusion, macrophage density was significantly increased, whereas neutrophil density was reduced, in DIO mice compared with lean mice. At 7 days of reperfusion, collagen deposition in the scar was significantly reduced and left ventricular (LV) dilation and cardiac hypertrophy were increased, indicative of adverse LV remodeling, in infarcted DIO mice. Characterization of a murine diet-induced model of obesity and insulin resistance that satisfies many aspects commonly observed in human obesity allows detailed examination of the adverse cardiovascular effects of diet-induced obesity at the molecular level.  相似文献   

20.
Gaucher disease and Fabry disease are lysosomal storage disorders characterized by the accumulation of sphingolipids. In both cases, the goal of gene therapy is to permanently provide tissues with enzyme levels allowing to avoid storage of the undigested substrates. Different gene therapy strategies must however be designed as Gaucher disease is due to a deficiency in the membrane-associated enzyme glucocerebrosidase, whereas Fabry disease is caused by a deficiency in the soluble enzyme alpha-galactosidase. Indeed, a soluble enzyme can be provided to tissues is trans by gene-modified cells whereas gene transfer has to target the most affected cells in the case of membrane-bound enzymes. Thus, in non-neurological Gaucher disease (type 1), the hematopoietic tissue has to be targeted as the deficiency affects the monocyte/macrophage lineage. Following promising preclinical studies, clinical protocols have been initiated to explore the feasibility and safety of retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with type 1 Gaucher disease. Although gene-marked cells were detected in vivo, the level of corrected cells was very low, a finding indicating that improved vectors along with partial myeloablation may be necessary. Here, lentiviral vectors should enable more gene transduction into the hematopoietic target cells. As concerns the diffuse neurological lesions in types 2 and 3 of Gaucher disease, they will probably be especially difficult to target by gene therapy because of the non soluble nature of glucocerebrosidase. Finally, over the last few years, Fabry disease has become a compelling target for gene therapy as an etiology-based treatment strategy. Indeed, several recent studies aiming at creating a large in vivo source of alpha-galactosidase have yielded positive long-term results in the Fabry knock-out mouse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号