首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Jackson A  Iwasiow RM  Tiberi M 《FEBS letters》2000,470(2):183-188
To delineate the role of the cytoplasmic tail in the distinct binding and coupling properties of human dopamine D1-like receptors, chimeric receptors were generated in which the entire tail region of wild-type human D1A (or D1) and D1B (or D5) receptors was exchanged. The hD1A-D1BT, but not hD1B-D1AT, receptor expression was dramatically reduced compared with wild-type receptor expression. Swapping the cytoplasmic tail resulted in a full switch of dopamine binding affinity and constitutive activity, while dopamine potency decreased and agonist-mediated maximal activation of adenylyl cyclase increased for both chimeras. Hence, the cytoplasmic tail plays a crucial role in D1-like receptor expression, agonist binding affinity and constitutive activation but regulates in a distinct fashion the formation of D1A and D1B receptor active states upon dopamine binding.  相似文献   

2.
Cui Y  Jin J  Zhang X  Xu H  Yang L  Du D  Zeng Q  Tsien JZ  Yu H  Cao X 《PloS one》2011,6(5):e20312
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefrontal cortical synaptic plasticity and working memory is not yet clear. In the present study, we measured prefrontal cortical synaptic plasticity and working memory function in NR2B overexpressing transgenic mice. In vitro electrophysiological data showed that overexpression of NR2B specifically in the forebrain region resulted in enhancement of prefrontal cortical long-term potentiation (LTP) but did not alter long-term depression (LTD). The enhanced LTP was completely abolished by a NR2B subunit selective antagonist, Ro25-6981, indicating that overexpression of NR2B subunit is responsible for enhanced LTP. In addition, NR2B transgenic mice exhibited better performance in a set of working memory paradigms including delay no-match-to-place T-maze, working memory version of water maze and odor span task. Our study provides evidence that NR2B subunit of NMDA receptor in prefrontal cortex is critical for prefrontal cortex LTP and prefrontal cortex-related working memory.  相似文献   

3.
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25?μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1?μM) and sulpiride (1 and 40?μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10?μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25?μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.  相似文献   

4.
NMDA受体是兴奋性氨基酸谷氨酸(Glu)的特异性受体,属配体门控离子通道,是由不同的亚单位组成.现已发现,NMDA受体至少存在7个亚单位(NR1,NR2A-D,NR3A-B),其中NR2B在7个亚单位中扮演非常重要的角色.近年来对NR2B研究表明,其在调控神经元突触的可塑性、学习与记忆以及治疗精神紊乱方面具有重要的意义.对近期有关NR2B亚单位的结构、功能特性及其表达与调控的研究进展做一综述.  相似文献   

5.
The mammalian dopamine D1-like receptor gene family is comprised of two members, termed D1/D1A and D5/D1B. In an attempt to define the role of the carboxyl terminal (CT) tail in the expression of D5 subtype-specific pharmacological and constitutive activity profiles, we examined a series of D5 receptor chimeras in which only the CT tail was swapped with corresponding sequences encoding human/vertebrate D1-like receptors. D5/D1(CT) or D5/D1D(CT) tail substitution mutants displayed a rank order of potency and agonist affinities virtually mimicking wild-type (wt) D1 receptors, as indexed by both ligand binding and dopamine-stimulated cAMP accumulation assays, and, similar to wt D1 receptors, did not exhibit receptor constitutive activity or responsiveness to inverse agonists. D1/D5(CT) or D1/D1D(CT) tail receptor mutants displayed agonist pharmacological and functional characteristics not significantly different from parental D1 or mutant D5/D1(CT) and D5/D1D(CT) receptors. The affinities for numerous antagonists remained essentially unchanged for all receptor chimeras relative to parental wt receptors. A series of stepwise D5-CT-tail truncation/deletion mutants identified the region encoded by amino acids 438-448 and particularly Gln(439), as necessary and sufficient for the full expression of high affinity agonist and functional D5 receptor characteristics. Site-directed mutagenesis of the highly conserved D5/D1B receptor residue Gln(439)-(Ala/Ile), converts the full-length D5 receptor to one displaying "super" D5 characteristics with expressed affinities for discriminating agonists approximately 4- to 5-fold higher than wt D5 but without any concomitant increases of agonist-independent basal cAMP accumulation or intrinsic activity. Taken together, these data suggest that, in addition to other well characterized receptor domains, the agonist pharmacological and functional signature of the D5/D1B receptor is modulated by sequence-specific motifs within the CT tail and that one conserved amino acid in this region can further regulate D5 agonist high affinity binding interactions independent of receptor constitutive activity.  相似文献   

6.
NMDA receptor (NMDAR)-mediated excitatory synaptic transmission plays a critical role in synaptic plasticity and memory formation, whereas its dysfunction may underlie neuropsychiatric and neurodegenerative diseases. The neuroactive steroid pregnenolone sulfate (PS) acts as a cognitive enhancer in impaired animals, augments LTP in hippocampal slices by enhancing NMDAR activity, and may participate in the reduction of schizophrenia's negative symptoms by systemic pregnenolone. We report that the effects of PS on NMDAR function are diverse, varying with subunit composition and NR1 splice variant. While PS potentiates NR1-1a/NR2B receptors through a critical steroid modulatory domain in NR2B that also modulates tonic proton inhibition, potentiation of the NMDA response is not dependent upon relief of such inhibition, a finding that distinguishes it from spermine. In contrast, the presence of an NR2A subunit confers enhanced PS-potentiation at reduced pH, suggesting that it may indeed act like spermine does at NR2B-containing receptors. Additional tuning of the NMDAR response by PS comes via the N-terminal exon-5 splicing insert of NR1-1b, which regulates the magnitude of proton-dependent PS potentiation. For NR2C- and NR2D-containing receptors, negative modulation at NR2C receptors is pH-independent (like NR2B) while negative modulation at NR2D receptors is pH-dependent (like NR2A). Taken together, PS displays a rich modulatory repertoire that takes advantage of the structural diversity of NMDARs in the CNS. The differential pH sensitivity of NMDAR isoforms to PS modulation may be especially important given the emerging role of proton sensors to both learning and memory, as well as brain injury.  相似文献   

7.
A chimeric D1A dopaminergic receptor harboring the cytoplasmic tail (CT) of the D1B subtype (D1A-CTB) has been used previously to show that CT imparts high dopamine (DA) affinity and constitutive activity to the D1B receptors. However, the D1A-CTB chimera, unlike the D1B subtype, exhibits a significantly lower DA potency for stimulating adenylyl cyclase and a drastically lower maximal binding capacity (Bmax). Here, using a functional complementation of chimeric D1-like receptors, we have identified the human D1B receptor regions regulating the intramolecular relationships that lead to an increased DA potency and contribute to Bmax. We demonstrate that the addition of variant residues of the third extracellular loop (EL3) of the human D1B receptor into D1A-CTB chimera leads to a constitutively active mutant receptor displaying an increased DA affinity, potency, and Bmax. These results strongly suggest that constitutively active D1-like receptors can adopt multiple active conformations, notably one that confers increased DA affinity with decreased DA potency and Bmax and another that imparts increased DA affinity with a strikingly increased DA potency and Bmax. Overall, we show that a novel molecular interplay between EL3 and CT regulates multiple active conformations of D1-like receptors and may have potential implications for other G protein-coupled receptor classes.  相似文献   

8.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

9.
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2-2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.  相似文献   

10.
D(1)-like receptors have been reported to decrease oxidative stress in vascular smooth muscle cells by decreasing phospholipase D (PLD) activity. However, the PLD isoform regulated by D(1)-like receptors (D(1) or D(5)) and whether abnormal regulation of PLD by D(1)-like receptors plays a role in the pathogenesis of hypertension are unknown. The hypothesis that the D(5) receptor is the D(1)-like receptor that inhibits PLD activity and serves to regulate blood pressure was tested using D(5) receptor mutant mice (D(5)(-/-)). We found that in the mouse kidney, PLD2, like the D(5) receptor, is mainly expressed in renal brush-border membranes, whereas PLD1 is mainly expressed in renal vessels with faint staining in brush-border membranes and collecting ducts. Total renal PLD activity is increased in D(5)(-/-) mice relative to congenic D(5) wild-type (D(5)(+/+)) mice. PLD2, but not PLD1, expression is greater in D(5)(-/-) than in D(5)(+/+) mice. The D(5) receptor agonist fenoldopam decreases PLD2, but not PLD1, expression and activity in human embryonic kidney-293 cells heterologously expressing the human D(5) receptor, effects that are blocked by the D(5) receptor antagonist SCH-23390. These studies show that the D(5) receptor regulates PLD2 activity and expression. The hypertension in the D(5)(-/-) mice is associated with increased PLD expression and activity. Impaired D(5) receptor regulation of PLD2 may play a role in the pathogenesis of hypertension.  相似文献   

11.
Increased activity of D2 receptors (D2Rs) in the striatum has been linked to the pathophysiology of schizophrenia. To determine directly the behavioral and physiological consequences of increased D2R function in the striatum, we generated mice with reversibly increased levels of D2Rs restricted to the striatum. D2 transgenic mice exhibit selective cognitive impairments in working memory tasks and behavioral flexibility without more general cognitive deficits. The deficit in the working memory task persists even after the transgene has been switched off, indicating that it results not from continued overexpression of D2Rs but from excess expression during development. To determine the effects that may mediate the observed cognitive deficits, we analyzed the prefrontal cortex, the brain structure mainly associated with working memory. We found that D2R overexpression in the striatum impacts dopamine levels, rates of dopamine turnover, and activation of D1 receptors in the prefrontal cortex, measures that are critical for working memory.  相似文献   

12.
Interactions between dopamine and glutamate receptors are essential for prefrontal cortical (PFC) and hippocampal cognitive functions. The hippocampus has been identified as a detector of a novel stimulus, where an association between incoming information and stored memories takes place. Further to our previous results which showed a strong synergistic interaction of dopamine D1 and glutamate NMDA receptors, the present study is going to investigate the functional status of that interaction in rats, following their exposure to a novel environment. Our results showed that the “spatial” novelty induced in rat hippocampus and PFC (a) a significant increase in phosphorylation of NMDA and AMPA receptor subunits, as well as a robust phosphorylation/activation of ERK1/2 signaling, which are both dependent on the concomitant stimulation of D1/NMDA receptors and are both abolished by habituation procedure, (b) chromatin remodeling events (phosphorylation-acetylation of histone H3) and (c) an increase in the immediate early genes (IEGs) c-Fos and zif-268 expression in the CA1 region of hippocampus, which is dependent on the co-activation of D1/NMDA and acetylcholine muscarinic receptors. In conclusion, our results clearly show that a strong synergistic interaction of D1/NMDA receptor is required for the novelty-induced phosphorylation of NMDA and AMPA receptor subunits and for the robust activation of ERK1/2 signaling, leading to chromatin remodeling events and the expression of the IEGs c-Fos and zif-268, which are involved in the regulation of synaptic plasticity and memory consolidation.  相似文献   

13.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

14.
《Journal of Physiology》2013,107(6):503-509
The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.  相似文献   

15.
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.  相似文献   

16.
NMDA receptors (NMDARs) activation in the hippocampus and insular cortex is necessary for spatial memory formation. Recent studies suggest that localization of NMDARs to lipid rafts enhance their signalization, since the kinases that phosphorylate its subunits are present in larger proportion in lipid raft membrane microdomains. We sought to determine the possibility that NMDAR translocation to synaptic lipid rafts occurs during plasticity processes such as memory formation. Our results show that water maze training induces a rapid recruitment of NMDAR subunits (NR1, NR2A, NR2B) and PSD-95 to synaptic lipid rafts and decrease in the post-synaptic density plus an increase of NR2B phosphorylation at tyrosine 1472 in the rat insular cortex. In the hippocampus, spatial training induces selective translocation of NR1 and NR2A subunits to lipid rafts. These results suggest that NMDARs translocate from the soluble fraction of post-synaptic membrane (non-raft PSD) to synaptic lipid raft during spatial memory formation. The recruitment of NMDA receptors and other proteins to lipid rafts could be an important mechanism for increasing the efficiency of synaptic transmission during synaptic plasticity process.  相似文献   

17.
Dopamine, via activation of D1-like receptors, inhibits Na,K-ATPase and Na,H-exchanger in renal proximal tubules and promotes sodium excretion. This effect of dopamine is not seen in conditions associated with oxidative stress such as hypertension, diabetes, and aging due to uncoupling of D1-like receptors from G proteins. To identify the role of oxidative stress in uncoupling of the D1-like receptors, we utilized primary cultures from rat renal proximal tubules. Hydrogen peroxide (H2O2), an oxidant, treatment to the cell cultures increased the level of malondialdehyde, a marker of oxidative damage. Further, H2O2 decreased membranous D1-like receptor numbers and proteins, D1-like agonist (SKF 38393)-mediated [35S]GTPgammaS binding and SKF 38393-mediated inhibition of Na,K-ATPase. Moreover, H2O2 treatment to the cultures caused membranous translocation of G-protein-coupled receptor kinase 2 (GRK 2) and increased serine phosphorylation of D1A receptors accompanied by an increase in protein kinase C (PKC) activity. Interestingly, PKC inhibitors blocked the H2O2-mediated stimulation of GRK 2 and serine phosphorylation of D1A receptors. Further, GRK 2 antisense but not scrambled oligonucleotides attenuated the effect of H2O2 on membranous expression of GRK 2. Moreover, direct activation of PKC with phorbol ester (PMA) resulted in reduction of SKF 38393-mediated [35S]GTPgammaS binding. We conclude that H2O2 stimulates PKC leading to the activation of GRK 2, which causes serine phopshorylation of D1A receptors and receptor G-protein uncoupling in these cells, resulting in impairment in D1-like receptor function.  相似文献   

18.
The sympathetic nervous system plays an important role in the regulation of blood pressure. There is increasing evidence for positive and negative interactions between dopamine and adrenergic receptors; the activation of the alpha-adrenergic receptor induces vasoconstriction, whereas the activation of dopamine receptor induces vasorelaxation. We hypothesize that the D1-like receptor and/or D3 receptor also inhibit alpha1-adrenergic receptor-mediated proliferation in vascular smooth muscle cells (VSMCs). In this study, VSMC proliferation was determined by measuring [3H]thymidine incorporation, cell number, and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Norepinephrine increased VSMC number and MTT uptake, as well as [3H]thymidine incorporation via the alpha1-adrenergic receptor in aortic VSMCs from Sprague-Dawley rats. The proliferative effects of norepinephrine were attenuated by the activation of D1-like receptors or D3 receptors, although a D1-like receptor agonist, fenoldopam, and a D3 receptor agonist, PD-128907, by themselves, at low concentrations, had no effect on VSMC proliferation. Simultaneous stimulation of both D1-like and D3 receptors had an additive inhibitory effect. The inhibitory effect of D3 receptor was via protein kinase A, whereas the D1-like receptor effect was via protein kinase C-zeta. The interaction between alpha1-adrenergic and dopamine receptors, especially D1-like and D3 receptors in VSMCs, could be involved in the pathogenesis of hypertension.  相似文献   

19.
Two apolipoprotein E (apoE) receptors, the very low density lipoprotein (VLDL) receptor and apoE receptor 2 (apoER2), are also receptors for Reelin, a signaling protein that regulates neuronal migration during brain development. In the adult brain, Reelin is expressed by GABA-ergic interneurons, suggesting a potential function as a modulator of neurotransmission. ApoE receptors have been indirectly implicated in memory and neurodegenerative disorders because their ligand, apoE, is genetically associated with Alzheimer disease. We have used knockout mice to investigate the role of Reelin and its receptors in cognition and synaptic plasticity. Mice lacking either the VLDL receptor or the apoER2 show contextual fear conditioning deficits. VLDL receptor-deficient mice also have a moderate defect in long term potentiation (LTP), and apoER2 knockouts have a pronounced one. The perfusion of mouse hippocampal slices with Reelin has no effect on baseline synaptic transmission but significantly enhances LTP in area CA1. This Reelin-dependent augmentation of LTP is abolished in VLDL receptor and apoER2 knockout mice. Our results reveal a role for Reelin in controlling synaptic plasticity in the adult brain and suggest that both of its receptors are necessary for Reelin-dependent enhancement of synaptic transmission in the hippocampus. Thus, the impairment of apoE receptor-dependent neuromodulation may contribute to cognitive impairment and synaptic loss in Alzheimer disease.  相似文献   

20.
Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号