首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The locus for Tyrosinase-Positive Oculocutaneous Albinism (ty-pos OCA) has not yet been localised. The search for the ty-pos OCA locus has included a search for linkage to candidate pigment loci and a candidate chromosomal region, as well as a random search using highly polymorphic markers in 42 families, including 271 individuals of whom 79 are affected. The lod scores for the tyrosinase (TYR) locus (11q14–q21), homologous to the albino locus, c, in the mouse and the CAS2/TRP1 locus (9p22-pter), homologous to the brown locus, b, in the mouse were -5.89 and -7.22, respectively, at a recombination fraction of =0.01, thus excluding them from being the ty-pos OCA locus. In the candidate chromosomal region, 11p, four loci (probes) were tested, SAA (pSAA82), CALC (pHC36), HBB (Gamma-globin haplotype) and an AC repeat polymorphism at the Wilm's Tumour locus (WT1). A portion of 11p was excluded with the following lod scores: pSAA82 lod=-2.05 at =0.10; pHC36 lod=-3.87 at =0.05; gamma-globin haplotype lod=-2.80 at =0.10; and WT1 lod=-2.34 at =0.10. Thirty-three polymorphic markers randomly distributed on 13 different chromosomes were all excluded from close linkage to ty-pos OCA.  相似文献   

2.
The human transmembrane secretory component (SC or poly-Ig receptor, PIGR) is expressed basolaterally on glandular epithelial cells and is responsible for the external translocation of polymeric IgA and IgM. SC is hence a key molecule in antibody protection of mucosal surfaces. The human SC gene (locus PIGR) is located on chromosome 1 (1q31–q41). Here we present the first genetic linkage study of PIGR versus syntenic markers, including D1S58 and F13B, which have been previously regionalized to 1q31–q32 and 1q31–q32.1, respectively. We found that PIGR is closely linked to D1S58 (lods + 5.06 at max = 0.06, without sex difference). PIGR versus F13B showed + 1.46 at max = 0.25 for both sexes combined. A recombination of 0.06 between F13B and D1S58 (lods + 2.24) was in contrast to a previously published study giving max = 0.22 (lods + 3.9), the combined lods being 5.6 at max = 0.20. The progeny of a triply heterozygotic female indicated that PIGR is the flanking locus, therefore suggesting a cen-F13B-D1S58-PIGR-qter gene sequence on human chromosome 1. Only negative lod scores to RH, C8@, and PGM1 on 1p, and FY on proximal 1q, were found. Current combined Norwegian allele frequencies were estimated for PIGR to be A1 = 0.63, A2 = 0.37 (370 chromosomes), and for D1S58 to be A1 = 0.44, A2 = 0.56 (218 chromosomes).  相似文献   

3.
Summary Linkage analysis and haplotype characterization for the allelic system detected at the 3 creatine kinase muscle type (CKMM) locus were carried out in 59 myotonic dystrophy (DM) families from Italy and Spain. A maximum lod score (z max) of 21.26 at a recombination frequency () of 0.00 was found. No statistically significant linkage disequilibrium was observed between DM and the RFLPs examined. However, a substantial linkage disequilibrium was found between CKMM-TaqI and CKMM-NcoI sites in these two populations.  相似文献   

4.
Summary Spinocerebellar ataxia (SCA) was studied in a seven-generation (Schut-Swier) kindred using linkage analysis to localize further the autosomal dominant, HLA-linked, disease-producing SCA1 locus relative to four other loci that map to the short arm of human chromosome 6. Genotypes for each locus were determined in as many individuals as possible from a total of 162 affected and unaffected family members that were studied. A maximum pairwise lod score of 8.52 ( m = 0.10, f = 0.22) for linkage between SCA1 and HLA-A was observed. Multipoint linkage analyses for the SCA1, HLA-A, F13A, D6S7, and GLO1 loci revealed that the SCA1 locus is most probably located telomeric to HLA-A, with a likely location between HLA-A and F13A.  相似文献   

5.
Summary In order to localize the gene for the X-linked form of Alport syndrome (ATS) more precisely, we performed restriction fragment length polymorphism analysis with nine different X-chromosomal DNA markers in 107 members of twelve Danish families segregating for classic ATS or progressive hereditary nephritis without deafness. Two-point linkage analysis confirmed close linkage to the markers DXS17(S21) (Z max = 4.44 at = 0.04), DXS94(pXG-12) (Z max=8.07 at =0.04), and DXS101(cX52.5) (Z max=6.04 at =0.00), and revealed close linkage to two other markers: DXS88(pG3-1) (Z max =6.36 at =0.00) and DXS11(p22–33) (z max=3.45 at =0.00). Multipoint linkage analysis has mapped the gene to the region between the markers DXS17 and DXS94, closely linked to DXS101. By taking into account the consensus map and results from other studies, the most probable order of the loci is: DXYS1(pDP34)-DXS3(p19-2)-DXS17-(ATS, DXS101)-DXS94-DXS11-DXS42(p43-15)-DXS51(52A). DXS88 was found to be located between DXS17 and DXS42, but the order in relation to the ATS locus and the other markers used in this study could not be determined.  相似文献   

6.
Summary In a family in which X-linked megalocornea is segregating, the disease locus was found to be closely linked to DXS87 (zmax=3.91, max=0.00) and DXS94 (zmax=3.34, max=0.00) in Xq21.3-q22.  相似文献   

7.
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders that are clinically and genetically heterogeneous. We report here a genetic linkage study, with five chromosome 12q markers, of three Martinican families with ADCA type I, for which the spinocerebellar ataxia 1 (SCA1) locus was excluded. Linkage to the SCA2 locus was demonstrated with a maximal lod score of 6.64 at = 0.00 with marker D12S354. Recombinational events observed by haplotype reconstruction demonstrated that the SCA2 locus is located in an approximately 7-cM interval flanked by D 12S 105 and D12S79. Using thez max-l method, multipoint analysis further reduced the candidate interval for SCA2 to a region of 5 cM. Two families shared a common haplotype at loci spanning 7 cM, which suggests a founder effect, whereas a different haplotype segregated with the disease in the third family. Finally, a mean anticipation of 12 ± 14 years was found in parent-child couples, with no parental sex effect, suggesting that the disease might be caused by an expanded and unstable triplet repeat.  相似文献   

8.
Summary Three families with anhidrotic ectodermal dysplasia (AED) have been studied by linkage analysis with seven polymorphic DNA markers from the Xp11-q21 region. Previously reported linkage to DXYS1 (Xq13-q21) has been confirmed (z()=4.08 at =0.05) and we have also established linkage to another polymorphic locus, DXS159, located in Xq11-q12 (z()=4.28 at =0.05). Physical mapping places DSX159 proximal to the Xq12 breakpoint of an X autosome translocation found in a female with clinical signs of ectodermal dysplasia. Of all markers that have been used in linkage analysis of AED, DXS159 would appear the closest on the proximal side of the disease locus.  相似文献   

9.
The spinal muscular atrophies (SMA) are among the most common autosomal recessive disorders. We have performed linkage analysis using both standard restriction fragment length polymorphisms (RFLPs) as well as microsatellite polymorphisms [Ca(n)] on 49 Canadian SMA families (types 1, 2, and 3) that both flank and are linked to SMA. The closest SMA linkage was observed with the MAP1B locus (zmax=8.04, max=0.0). Multipoint linkage analysis gave a high probability of SMA mapping between D5S6 and D5S39. Only one family (type 3) that fulfilled our diagnostic criteria for SMA showed nonlinkage with 5q13 markers. This study shows the feasibility of accurate molecular diagnosis of SMA utilizing 5q13 satellite polymorphisms.  相似文献   

10.
Summary We report linkage studies in 18 choroideremia (TCD) families using four closely linked polymorphic markers. Probe pZ11, which is known to be deleted in several unrelated patients with TCD, showed no recombinations (z max 15.63 at = 0.00). In contrast, one recombination was observed with DXS367, which is also physically very close to TCD. Loci DXS95 and DXYS69 each showed more than one recombination with TCD. Moreover, these analyses revealed a double crossover between TCD and DXYS1, changing the previously reported very close linkage to a recombination fraction of 0.04 with a lod score of 9.93. Multipoint linkage analysis placed TCD proximal to DXS95-DXYS69 and very close to DXS367-pZ11 with almost identical multipoint lod score maxima either proximal to DXS367 (z max= 23.43) or proximal to pZ11 (z max=23.36). These results provide a refined linkage map around TCD and will also be useful in DNA diagnostics of the disease.  相似文献   

11.
A large inbred kindred from Pakistan in which an isolated type of split-hand/split-foot anomaly is transmitted as an X-chromosomal trait has previously been described. An X/autosomal translocation and an X-chromosomal rearrangement have been excluded by cytogenetic studies. In order to map the gene responsible for this disorder, linkage analysis has been performed by using 14 highly polymorphic DNA markers distributed over the whole X chromosome. Two-point linkage analysis between the disease locus and X-chromosomal marker loci gives maximal lod scores at = 0.00 with the loci DXS294 (Z max= 5.13) and HPRT (Z max= 4.43), respectively, suggesting that the gene for the X-chromosomal split-hand/split-foot anomaly is localized at Xq26–q26.1.  相似文献   

12.
Summary The close linkage between the PstI-restriction fragment length polymorphism (RFLP) disclosed by the L2.7 genomic DNA probe and the Kidd blood group locus is described. The maximum lod score is+8.53 at recombination fraction . The upper probability limit of the recombination fraction is θ =1 0.11. The L2.7 probe, previously assigned provisionally to chromosome 17, is by the present study assigned to chromosome 18. This also assigns the Kidd blood group locus (JK) to chromosome 18. Accepting previous deletion mapping, the shortest regions of overlap (SRO) for JK is 18q11-12, whereas one of our hybrids assigns L2.7 to 18q11-pter, suggesting centromeric localisation of the linkage group. JK has been assigned previously to chromosome 2 because of its provisional linkage to IGK which in turn has been mapped to 2p12. Our own JK-IGK linkage data do in fact support the previous positive lod scores at high recombination fractions (total lods+4.12 at θ1 = 0.30). No obvious explanation for the conflicting gene mapping data is found.  相似文献   

13.
Assignment of the gene for central core disease to chromosome 19   总被引:6,自引:0,他引:6  
Summary In a large kindred in which the gene for central core disease is segregating, we have demonstrated linkage between the disorder and a marker on chromosome 19q. Marker D19S9 (p1J2) was linked to central core disease with a lod score of 6.4 at = 0.03 (support interval 0.01–0.14) thus localizing the gene for this disorder in or very close to 19q12–q13.2.  相似文献   

14.
Summary We have studied the genetic linkage of two markers, the apolipoprotein C1 (APOC1) gene and a cytochrome P450 (CYP2A) gene, in relation to the gene for myotonic dystrophy (DM). A peak lod score of 9.29 at 2 cM was observed for APOC1-DM, with a lod score of 8.55 at 4cM for CYP2A-DM. These two markers also show close linkage to each other ( max = 0.05, Z max = 9.09). From examination of the genotypes of the recombinant individuals, CYP2A appears to map proximal to DM because in one recombinant individual CYP2A, APOC2 and CKMM had all recombined with DM. Evidence from another CYP2A-DM recombinant individual places CYP2A proximal to APOC2 and CKMM. Localisation of CYP2A on a panel of somatic cell hybrids also suggests that it is proximal to DM and APOC2/C1/E gene cluster.  相似文献   

15.
Familial multiple endocrine neoplasia type 2A (MEN 2A) is a cancer syndrome that is inherited as an autosomal dominant with high penetrance. Its clinical features are medullary carcinoma of the thyroid, pheochromocytomas, and hyperparathyroidism. A new polymorphic locus D10S97 (probe: KW6SacI) detects a codominant EcoRI polymorphism that is tightly linked to the MEN2A locus. The peak lod score for linkage between D10S97 with MEN2A is 13.03 at =0.00. The polymorphic locus D10S97 maps, by linkage analysis, into the previously defined interval between FNRB and RBP3 to which MEN2A has been assigned. We present physical mapping data showing that the probe pKW6 originates from 10p13 and that the polymorphic locus D10S97 in 10q11.2 is detected by cross-hybridization.  相似文献   

16.
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder resulting in loss of motor neurons. We have performed linkage analysis on a panel of families using nine markers that are closely linked to the SMA gene. The highest lod score was obtained with the marker D5S351 (Zmax = 10.04 at = 0 excluding two unlinked families, and Zmax = 8.77 at = 0.007 with all families). One type III family did not show linkage to the 5q13 markers, and in one type I consanguineous family the affected individual did not show homozygosity except for the marker D5S435. Three recombinants were identified with the closest centromeric marker, D5S435, which position the gene telomeric of this marker. These recombinants will facilitate finer mapping of the location of the SMA gene. Lastly, two families provide strong evidence for a remarkable variability in presentation of the SMA phenotype, with the age at onset in one family varying from 17 months to 13 years.  相似文献   

17.
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder with an increased susceptibility of peripheral nerves to mechanical lesions resulting in transient nerve palsies. Many carriers remain asymptomatic but can be traced by electrophysiological examination, thereby demonstrating that HNPP is a generalised polyneuropathy. By using highly polymorphic markers linkage analysis was performed in a large family with HNPP. This resulted in a maximum lod score of 4.20 at =0.10 with D17S520. Three-point linkage suggests that the gene for HNPP is located on chromosome 17 in the region between D17S250 (q11.2–q12) and D17S520 (p12), a region that has recently been shown to encompass a locus for another hereditary neuropathy, hereditary motor and sensory neuropathy type 1 (HMSN type 1). This raises the possibility that HNPP and this form of HMSN type 1 are allelic. In keeping with this speculation is our recent finding that D17S122, another marker from the HMSN type 1 region, displays apparent loss of heterozygosity in this family.  相似文献   

18.
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at =0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.  相似文献   

19.
Summary Linkage data on human peptidase C (PEPC), human factor H (HF), and coagulation factor XIIIB (F13B) are presented. The results confirm linkage between HF and F13B (lod=5.32 at =0.10 in males), and give strong evidence for linkage between PEPC and HF (lod=5.14 at =0.10 in males) and between PEPC and F13B (lod=3.55 at =0.10 in males). The claim that PEPA is linked with HF must be withdrawn.  相似文献   

20.
Summary The linkage analysis between the locus for coagulation factor XIII-A (F13A) and HLA region genes (HLA-A,-C,-B) was performed. In males, the maximum of lod scores between F13A and HLA was 0.33 at =0.30, and in females lod scores were negative at all values of . The results provided no evidence for close linkage between F13A and HLA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号