首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two nitrogen and sulfur containing ligands, 1-methyl-4-((4-methylimidazol-5-yl)methylthio)benzene (NS-mim) (1) and 1-methyl-4-(2-pyridylmethylthio)benzene (NS-mpy) (2) were synthesized and a series of their Cu(II) complexes, 3-10, prepared. The imidazole-containing complexes (3-6) have the form [Cu(NS-mim)2(solvent)2](X)2 where X = ClO4, BF4and [Cu(NS-mim)2(Y)2] where Y = Cl or Br and the pyridine-containing complexes (7-10) have the form [Cu(NS-mpy)2]X2 (where X = ClO4, BF4) and [Cu2(NS-mpy)2Y4] (where Y = Cl or Br). These complexes were characterized by a combination of elemental analysis, FAB-MS and electrochemistry. The X-ray structure of the imidazole-containing [Cu(NS-mim)2(DMF)2](ClO4)2 (3) was determined and it showed the copper(II) coordinated only by the nitrogen donors while the sulfurs remain uncoordinated. In comparison, the X-ray structure of the pyridine-containing [Cu2(NS-mpy)2(Cl)4] (9) shows a dinuclear copper(II) complex with the nitrogens and the sulfurs coordinated along with a terminal chloride and two μ-chloro atoms bridging the coppers. Cyclic voltammetry studies indicated that the complexes undergo quasi-reversible one-electron reductions in acetonitrile at potentials between 0.31 and 0.51 V versus SCE. The complexes were found to be active for the oxidation of di-tert-butyl catechol (DTBC) with the rate dependent on the ligand and the counterion present.  相似文献   

2.
Reaction of five 4R-benzaldehyde thiosemicarbazones (R = OCH3, CH3, H, Cl and NO2) with [Ru(PPh3)3(CO)(H)Cl] in refluxing methanol in the presence of a base (NEt3) affords complexes of two different types, viz. 1-R and 2-R. In the 1-R complexes the thiosemicarbazone is coordinated to ruthenium as a dianionic tridentate C,N,S-donor via C-H bond activation. Two triphenylphosphines and a carbonyl are also coordinated to ruthenium. The tricoordinated thiosemicarbazone ligand is sharing the same equatorial plane with ruthenium and the carbonyl, and the PPh3 ligands are mutually trans. In the 2-R complexes the thiosemicarbazone ligand is coordinated to ruthenium as a monoanionic bidentate N,S-donor forming a four-membered chelate ring with a bite angle of 63.91(11)°. Two triphenylphosphines, a carbonyl and a hydride are also coordinated to ruthenium. The coordinated thiosemicarbazone ligand, carbonyl and hydride constitute one equatorial plane with the metal at the center, where the carbonyl is trans to the coordinated nitrogen of the thiosemicarbazone and the hydride is trans to the sulfur. The two triphenylphosphines are trans. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the complexes show intense transitions in the visible region, which are assigned, based on DFT calculations, to transitions within orbitals of the thiosemicarbazone ligand. Cyclic voltammetry on the complexes shows two oxidations of the coordinated thiosemicarbazone on the positive side of SCE and a reduction of the same ligand on the negative side.  相似文献   

3.
The acid-base properties and Cu(II), Ni(II), Ag(I) and Hg(II) binding abilities of PAMAM dendrimer, L, and of the simple model compounds, the tetraamides of EDTA and PDTA, L1, were studied in solution by pH-metric methods and by 1H NMR and UV-Vis spectroscopy. PAMAM is hexabasic and six pKa values have been determined and assigned. PAMAM forms five identifiable complexes with copper(II), [CuLH4]6+, [CuLH2]4+, [CuLH]3+, [CuL]2+ and [CuLH-1]+ in the pH range 2-11 and three with nickel(II), [NiLH]3+, [NiL]2+ and [NiLH-1]+ in the pH range 7-11. The complex [CuLH4]6+, which contains two tertiary nitrogen and three amide oxygen atoms coordinated to the metal ion, is less stable than the analogous EDTA and PDTA tetraamide complexes [CuL1]2+, which contain two tertiary nitrogen and four amide oxygen atoms, due to ring size and charge effects. With increasing pH, [CuLH4]6+ undergoes deprotonation of two coordinated amide groups to give [CuLH2]4+ with a concomitant change from O-amide to N-amidate coordination. Surprisingly and in contrast to the tetraamide complexes [CuL1]2+, these two deprotonation steps could not be separated. As expected the nickel(II) complexes are less stable than their copper(II) analogues. The tetra-N-methylamides of EDTA, L1(b), and PDTA form mononuclear and binuclear complexes with Hg(II). In the case of L1(b) these have stoichiometries HgL1(b)Cl2, [HgL1(b)H−2Cl2]2−, [Hg2L1(b)Cl2]2+, Hg2L1(b)H−2Cl2 and [Hg2L1(b)H−5Cl2]3−. Based on 1H NMR and pH-metric data the proposed structure for HgL1(b)Cl2, the main tetraamide ligand containing species in the pH range <3-6.5, contains L1(b) coordinated to the metal ion through the two tertiary nitrogens and two amide oxygens while the structure of [HgL1(b)H−2Cl2]2−, the main tetraamide ligand species at pH 7.5-9.0, contains the ligand similarly coordinated but through two amidate nitrogen atoms instead of amide oxygens. The proposed structure of [Hg2L1(b)Cl2]2+, a minor species at pH 3-6.5, also based on 1H NMR and pH-metric data, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amide oxygens and a chloride ligand while that of [Hg2L1(b)H−5Cl2]3−, contains each Hg(II) coordinated to a tertiary amino nitrogen, two amidate nitrogens, a chloride and a hydroxo ligand in the case of one of the Hg(II) ions. The parent EDTA and PDTA amides only form mononuclear complexes. PAMAM also forms dinuclear as well as mononuclear complexes with mercury(II) and silver(I). In the pH range 3-11 six complexes with Hg(II) i.e. [HgLH4Cl2]4+, [HgLH3Cl2]3+, [Hg2LCl2]2+, [Hg2LH−1Cl2]+, [HgLH−1Cl2] and [HgLH−2Cl2]2− were identified and only two with Ag(I), [AgLH3]4+ and [Ag2L]2+. Based on stoichiometries, stability constant comparisons and 1H NMR data, structures are proposed for these species. Hence [HgLH4Cl2]4+ is proposed to have a similar structure to [CuLH4]6+ while [Hg2LCl2]2+has a similar structure to [Hg2L1(b)H−5Cl2]3−.  相似文献   

4.
New Ni(II) thiosemicarbazone complexes containing triphenylphosphine namely [Ni(Sal-mtsc)(PPh3)](2) and [Ni(Nap-mtsc)(PPh3)] (3) (where Sal-mtsc = salicylaldehyde-N(4)-methylthiosemicarbazone and Nap-mtsc = 2-hydroxy-1-naphthaldehyde-N(4)-methylthiosemicarbazone) have been synthesised and characterized by elemental analysis, IR, electronic and 1H NMR spectroscopy. The crystal structures of the complexes have been determined by single crystal X-ray diffraction technique. In all the complexes the thiosemicarbazone ligand coordinated to nickel through ONS mode. The electrochemical behavior of the complexes has been investigated by using cyclic voltammetry in acetonitrile. The new complexes were subjected to test their DNA topoisomerase II inhibition efficiency. The complex [Ni(Nap-mtsc)(PPh3)] (3) showed 95% inhibition. The observed inhibition activity was found to be more potent than the activity of conventional standard Nalidixic acid.  相似文献   

5.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction.  相似文献   

6.
New molybdenum complexes were prepared by the reaction of [MoVIO2(acac)2] or (NH4)2[MoVOCl5] with different N-substituted pyridoxal thiosemicarbazone ligands (H2L1 = pyridoxal 4-phenylthiosemicarbazone; H2L2 = pyridoxal 4-methylthiosemicarbazone, H2L3 = pyridoxal thiosemicarbazone). The investigation of monomeric [MoO2L1(CH3OH)] or polymeric [MoO2L1-3] molybdenum(VI) complexes revealed that molybdenum is coordinated with a tridentate doubly-deprotonated ligand. In the oxomolybdenum(V) complexes [MoOCl2(HL1-3)] the pyridoxal thiosemicarbazonato ligands are tridentate mono-deprotonated. Crystal and molecular structures of molybdenum(VI) [MoO2L1(CH3OH)]·CH3OH, and molybdenum(V) complexes [MoOCl2(HL1)]·C2H5OH, as well as of the pyridoxal thiosemicarbazone ligand methanol solvate H2L3·MeOH, were determined by the single crystal X-ray diffraction method.  相似文献   

7.
Two new copper(II) complexes of the type [Cu(L)X2), where L = (E)-N-phenyl-2-[phenyl (pyridine-2-yl)methylene]hydrazinecarboxamide X = Cl/Br have been synthesized and characterized by elemental analyses, FAB (fast atomic bombardment) magnetic measurements, electronic absorption, conductivity measurements cyclic voltammetry (CV) and Electron paramagnetic resonance (epr) spectroscopy. The structures of these complexes determined by single crystal X-ray crystallography show a distorted square based pyramidal (DSBP) geometry around copper(II) metal center. The distorted CuN2OX (X = Cl/Br) basal plane in them is comprised of two nitrogen and one oxygen atoms of the meridionally coordinated ligand and a chloride or bromide ion and axial position is occupied by other halide ion. The epr spectra of these complexes in frozen solutions of DMSO showed a signal at g ca. 2. The trend in g-value (g|| > g > 2.00) suggest that the unpaired electron on copper(II) has dx2-y2 character. Biological activities in terms of superoxide dismutase (SOD) and antimicrobial properties of copper(II) complexes have also been measured. The superoxide dismutase activity reveals that these two complexes catalyze the fast disproportionation of superoxide in DMSO solution.  相似文献   

8.
Palladium(II) complexes with triphenylphosphine (PPh3) and thioamides of the general formulae, [Pd(L)2(PPh3)2]Cl2 and [Pd(L)2(PPh3)2] have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 31P) methods, and two of them (trans-[Pd(PPh3)2(Dmtu)2]Cl2·(H2O)(CH3OH)0.5 (1) and trans-[Pd(PPh3)2(Mpy)2] (2)) by X-ray crystallography; where L = thiourea (Tu), methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu), tetramethylthiourea (Tmtu), 2-mercaptopyridine (Mpy), 2-mercaptopyrimidine (Mpm) and thionicotinamide (Tna). The spectral data of the complexes are consistent with the sulfur coordination of thioamides to palladium(II). The crystal structures of the complexes show that (1) has ionic character consisting of [Pd(PPh3)2(Dmtu)2]+2 cations and uncoordinated Cl ions, while (2) is a neutral complex with Mpy behaving as anionic thiolate ligand. The coordination environment around palladium in (2) is nearly regular square-planar, while in (1) the trans angles show significant distortions from 180°. The complexes were screened for antibacterial effects, brine shrimps lethality bioassay and antitumor activity. These complexes showed significant activities in most of the cases against the tested bacteria as compared to that of a standard drug. Their antitumor activity against prostate cancer cells (PC3) is comparable with doxorubicin, together with no cytotoxic effects in brine shrimps lethality bioassay study.  相似文献   

9.
Cadmium(II) complex with quinaldic acid (quinH), [Cd(quin)2(H2O)2] (1), was prepared by the reaction of cadmium(II) acetate and quinaldic acid in water-ethanol mixture, while another cadmium(II) complex, [Cd(quin)2(DMSO)2] (2), was prepared by the recrystallization of 1 in DMSO. Both complexes were characterized by IR spectroscopy and TGA/DTA methods. The crystal structure of 2 was determined by X-ray structure diffraction analysis. Cadmium(II) ion is octahedrally coordinated by two N,O-bidentate quinaldate ligands in equatorial and by two DMSO molecules in axial positions. Only weak intermolecular C-H···O hydrogen bonds and π-π stacking interactions as packing forces are present in the crystal structure of 2. The theoretical investigations included geometry optimizations of both complexes at DFT level (B3LYP and mPW1PW91 functionals) and calculations of vibrational frequencies. Calculated and experimental IR spectra were compared and characteristic bands assigned. The electronic properties of the complexes were investigated by the NBO analysis. Thermogravimetric studies showed the initial loss of two coordinated water molecules in 1 and of DMSO in 2 and then complete decomposition of quinaldate ligands for both 1 and 2.  相似文献   

10.
Dinaphthylmethylarsine complexes of palladium(II) and platinum(II) with the formulae [MX2L2] (M = Pd, Pt; L = di(1-naphthyl)methylarsine = Nap2AsMe and X = Cl, Br, I), [M2Cl2(μ-Cl)2L2], [PdCl(S2CNEt2)L], [Pd2Cl2(μ-OAc)2L2] and [MCl2(PR3)L] (PR3 = PEt3, PPr3, PBu3, PMePh2) have been prepared. These complexes have been characterized by elemental analyses, IR, Raman, NMR (1H, 13C, 31P) and UV-vis spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The crystal structures of trans-[PdCl2(PEt3)(Nap2AsMe)] and of [Pd(S2CNEt2)2], a follow-up product, were determined. The UV-vis spectra of [MX2L2] complexes show a red shift on going from X = Cl to X = I. The complexes [PdX2L2] and [PtX2L2] are strongly luminescent in fluid solution and in the solid at ambient temperature.  相似文献   

11.
《Inorganica chimica acta》1986,124(3):121-125
Several copper(II) complexes of the imines formed by condensation of 1-phenyl-3-formyl-2(1H)-pyridinethione and a primary amine (pyt-R) or a diamine (pyt2-R′) have been synthesized and characterized. The complexes have a CuN2S2 core and the sulfur donors exhibit thiolate character. The complexes of type [Cu(pyt2-R′)] [ClO4]2 display optical and ESR spectral behavior that indicates a progressive distortion of the metal coordination geometry from square- planar toward flattened tetrahedral as the carbon chain length of the R′ bridge is varied from two to four atoms. The spectral properties of the complexes of type [Cu(pyt-R)2] [ClO4]2 are more similar to one another and indicate significant distortion of Cu(II) from the planar arrangement.  相似文献   

12.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

13.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

14.
The mer-[Co(pydca)(H2O)3(ina)]·H2O (1), (2a3mpyH)2[Co(pydca)2(H2O)2]·2H2O (2) and (2a6mpyH)2[Co(pydca)2(H2O)2]·2H2O (3) complexes (H2pydca: pyridine-2,5-dicarboxylic acid, ina: isonicotinamide, 2a3mpy = 2-amino-3-methylpyridine and 2a6mpy = 2-amino-6-methylpyridine) were synthesised and characterised by elemental analysis, magnetic and spectroscopic measurements (UV-Vis and IR spectra) and single crystal X-ray diffraction technique. The thermal behaviour of the complexes was also studied by simultaneous thermal analysis techniques (TG, DTG and DTA). In complex 1, Co(II) ion was coordinated by one bidentate pydca, one isonicotinamide and three aqua ligands to generate a CoN2O4 distorted octahedral geometry. Complexes 2 and 3 crystallise in the triclinic system and space group and the structures consist of one complex anion [Co(pydca)2(H2O)2]2−, two protonated aminomethylpyridinium cations, ampyH+ and two crystal water molecules. In the anions, the Co(II) ions have a distorted octahedral configuration and are coordinated by two bidentate pydca and two trans-aqua ligands. The pydca ligand is coordinated to the Co(II) by both the heterocyclic N atom and the adjacent carboxylate group O atom, creating a chelate ring, while protonated ampy ions behave as counter ion.  相似文献   

15.
The nickel(II) complexes of the compositions [Ni(hmidtc)(bpy)2]ClO4 (I), [Ni(hmidtc)(phen)2]ClO4 (II), [Ni(hmidtc)(phen)2]SCN (III), [Ni(hmidtc)(phen)2]PF6 (IV), [Ni(hmidtc)(phen)2]BPh4 (V), [Ni(hmidtc)(phen)2]AcO·2H2O (VI) and [Ni(hmidtc)(phen)2]Br·H2O (VII), involving a combination of one hexamethyleneimine-dithiocarbamate anion (hmidtc) and two bidentate N,N-donor ligands (2,2′-bipyridine (bpy) for I or 1,10-phenanthroline (phen) for II-VII), have been prepared. The compounds were characterized by elemental analysis, molar conductivity measurements, UV-Vis and IR spectroscopy, magnetochemical measurements and thermal analysis. A single-crystal X-ray analysis of the complex I revealed a distorted octahedral geometry with the nickel(II) ion coordinated by four nitrogen atoms (from two bidentate-coordinated bpy molecules) and two sulfur atoms (from one bidentate-coordinated hmidtc anion), together giving an NiN4S2 donor set.  相似文献   

16.
A variety of platinum(II) complexes of methimazole (2-mercapto-1-methylimidazole; HImS = neutral form and ImS = thiolate form), coordinated in both thione and thiolate forms, have been isolated by reacting methimazole with [PtCl(terpy)]Cl (terpy = 2,2′:6′,2″ terpyridine), [PtCl2(bipy)] (bipy = bipyridine), [PtCl2(o-phen)] (o-phen = o-phenanthroline), [PtCl2(CH3CN)2] and [PtCl2(COD)] (COD = 1,5-cyclooctadiene). These complexes were characterized by electronic absorption, IR and NMR (1H, 13C, 195Pt) spectroscopies. Molecular structure of [Pt(bipy)(HImS)2]Cl2·3H2O (3a·3H2O) has been established by single crystal X-ray crystallography. Platinum thiolate complex, [Pt(ImS)2(HImS)2] (5), could be obtained by treatment of [Pt(HImS)4]Cl2 with sodium methoxide in methanol. The solution of 5 in organic solvents yielded bi- and tri-nuclear platinum complexes. The effect of diimine ligands on oxidation of methimazole moiety in the complexes has been studied by electrochemical oxidation and pulse radiolytic oxidation employing specific one-electron oxidant, radical.  相似文献   

17.
The synthesis of diethyl (pyridin-2-, -3-, -4-ylmethyl)phosphate (2-pmOpe, 3-pmOpe, 4-pmOpe) ligands and their palladium (II) complexes of general formula trans-[PdCl2L2] (L = 2-pmOpe, 3-pmOpe,4-pmOpe) has been described. Pyridine phosphate derivatives were synthesized via the condensation of phosphorochloridic acid diethyl ester with an appropriate pyridinylmethanol in the presence of triethylamine. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR, 31P CP-MAS NMR and elemental analyses. The crystal and molecular structures of palladium (II) complexes, i.e., [PdCl2(2-pmOpe)2] and [PdCl2(4-pmOpe)2] determined by the X-ray diffraction method, are presented. In both structures, Pd(II) ions are four-coordinated by two chlorine atoms and two pyridine nitrogen atoms. The geometry of complexes is square-planar and adopt a trans configuration, which is consistent with preparation method.  相似文献   

18.
The reaction of the β-diketone 1-phenyl-3-(pyridyn-2-yl)propane-1,3-dione, and the monosubstituted hydrazine 2-hydroxyethylhydrazine has been investigated. Two regioisomers were identified, 2-(3-phenyl-5-(pyridyn-2-yl)-1H-pyrazol-1-yl)ethanol (pzol.1) and 2-(5-phenyl-3-(pyridyn-2-yl)-1H-pyrazol-1-yl)ethanol (pzol.2) in 57:43 ratio. The separation of the regioisomers was done by silica column chromatography using ethyl acetate as eluent.Palladium(II) and platinum(II), [MCl2(pzol.1)2], [MCl2(pzol.2)], and zinc(II), [ZnCl2(pzol.1)], [ZnCl2(pzol.2)] complexes were synthesised and characterised. The crystals and molecular structures of [PdCl2(pzol.2)]·H2O and [ZnCl2(pzol.2)] were solved by X-ray diffraction, and consist of mononuclear complexes. In complex [PdCl2(pzol.2)]·H2O, the Pd(II) centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine atoms in cis disposition. The pzol.2 ligand acts as a bidentate chelate forming a five-membered metallocycle ring. In complex [ZnCl2(pzol.2)], the Zn(II) is five-coordinated with two Zn-N bonds (Zn-Npz and Zn-Npy), one Zn-OH bond and two Zn-Cl bonds. The coordination geometry is intermediate between a trigonal bipyramid and a square pyramid. In this complex, the ligand pzol.2 is tridentated and forms two metallocycle rings.  相似文献   

19.
Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)2(H2O)2], 1, [Co(mef)2(H2O)2], 2, [Ni(mef)2(H2O)2], 3, [Cu(mef)2(H2O)]2, 4 and [Zn(mef)2], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl3 solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, β-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)2(H2O)2] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)2] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 ± 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 ± 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7 and L-929 cancer cell lines, IC50 values in a μM range similar to that of the antitumor drug cis-platin and they are considered for further stages of screening in vitro and/or in vivo as agents with potential antitumor activity.  相似文献   

20.
Four cadmium(II) complexes of the semirigid tridentate ligand 8-[(pyridin-4-yl)methylthio] quinoline (TQMP4, L), namely, [CdL2](ClO4)2 (1), [Cd(L)Br2] (2), [Cd2(L)2(NO3)4] (3), and [Cd2(L)2I4] (4), have been prepared by the methods of layering and the diffusing of diethyl ether. The structures of the complexes have been identified by elemental analysis (EA), infrared spectra (IR) and single-crystal diffraction. The different coordination modes of the ligands and counter anions result in a 2D (4, 4) net structure in complex 1, a 1D polymer chain in complex 2, and 0D binuclear rings in complexes 3 and 4. Their antibacterial and antifungal activities were also tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号