首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li L  Buchet R  Wu Y 《Analytical biochemistry》2008,381(1):123-128
To elucidate the inhibition mechanisms of hydroxyapatite (HA), a biological model mimicking the mineralization process was developed. The addition of 4% (v/v) dimethyl sulfoxide (DMSO) in synthetic cartilage lymph (SCL) medium containing 2 mM calcium and 3.42 mM inorganic phosphate (Pi) at pH 7.6 and 37 °C produced HA as matrix vesicles (MVs) under physiological conditions. Such a model has the advantage of monitoring the HA nucleation process without interfering with other processes at the cellular or enzymatic level. Turbidity measurements allowed us to follow the process of nucleation, whereas infrared spectra and X-ray diffraction permitted us to identify HA. Mineral formation induced by DMSO and by MVs in the SCL medium produced crystalline HA in a similar manner. The nucleation model served to evaluate the inhibition effects of ATP, GTP, UTP, ADP, ADP-ribose, AMP, and pyrophosphate (PPi). Here 10 μM PPi, 100 μM nucleotide triphosphates (ATP, GTP, UTP), and 1 mM ADP inhibited HA formation directly, whereas 1 mM ADP-ribose and 1 mM AMP did not. This confirmed that the PPi group is a potent inhibitor of HA formation. Increasing the PPi concentration from 100 μM to 1 mM induced calcium pyrophosphate dihydrate. We propose that DMSO-induced HA formation could serve to screen putative inhibitors of mineral formation.  相似文献   

2.
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5′-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5′-monophosphate, and PPi by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5′-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.  相似文献   

3.
Isolated rat renal tubules from glucose from pyruvate, malate, glycerol and α-ketoglutarate. The rate of glucose formation from all but glycerol is enhanced by an increase in Ca2+ concentration. Because changes in inorganic phosphate concentrations influence the uptake and retention of calcium by isolated cells, the effect of changes in phosphate concentration upon renal gluconeogenesis was examined. It was found that changing phosphate concentration altered the metabolism of isolated rat renal tubules in three ways which dependend upon the Ca2+ concentration. In the absence of Ca2+, increasing phosphate concentration from 0.07 to 1.2 mM led to a stimulation of the decarboxylation of [U-14C]malate, [1-14C]pyruvate, [2-14C]-pyruvate, α-keto[5-14C]glutarate and [1,3-14C2]glycerol, and to an increase in ATP concentration but had no effect upon the rate of glucose formation from malate, pyruvate, α-ketoglutarate but a slight stimulation of glucose production from glycerol. A further increase in phosphate above 1.2 mM had no effect on any of these parameters. In the presence of either low (0.2 mM) or high (2.0 mM) Ca2+, changing phosphate concentration had no effect upon the decarboxylation of any of these substrates except glycerol whose decarboxylation was stimulated by increasing medium phosphate concentration. In the presence of calcium, increasing phosphate concentration led to an inhibition of glucose formation from malate, pyruvate and α-ketoglutarate but not from glycerol. Also in the presence of calcium both parathyroid hormone and cyclic AMP stimulated glucose formation, and under these conditions increasing phosphate concentration led to an inhibition of glucose formation. In tubules treated with parathyroid hormone an increase in phosphate concentration from 0.07 to 6.0 mM led to a significant increase in cyclic AMP concentration even though the rate of glucose formation decreased.Analysis of metabolite concentrations and rates of substrates decarboxylations, under a variety of conditions, revealed that Pi altered renal gluconeogenesis at a site different from those controlled by changes in Ca2+ concentration. The Pi-control site was tentatively identified as the glyceraldehyde phosphate dehydrogenase-glycerate kinase reaction sequence. However, the effect of changing Pi concentration upon parathyroid hormone-induced alterations in cyclic AMP concentration could not be explained by this action of Pi, and was probably due to an effect of Pi upon cellular calcium distribution. Thus, changes in Pi concentration appear to have two cellular effects, only one of which is related to a change in cellular calcium metabolism.  相似文献   

4.
Summary This study has monitored junctional and nonjunctional resistance. [Ca2+] i and [H] i , and the effects of various drugs in crayfish septate axons exposed to neutral anesthetics. The uncoupling efficiency of heptanol and halothane is significantly potentiated by caffeine and theophylline. The modest uncoupling effects of isoflurane, described here for the first time, are also enhanced by caffeine. Heptanol causes a decrease in [Ca2+] i and [H+] i both in the presence and absence of either caffeine or theophylline. A similar but transient effect on [Ca2+] i is observed with halothane. 4-Aminopyridine strongly inhibits the uncoupling effects of heptanol. The observed decrease in [Ca2–] i with heptanol and halothane and negative results obtained with different [Ca2+] o , Ca2+-channel blockers (nisoldipine and Cd2+) and ryanodine speak against a Ca2+ participation. Negative results obtained with 3-isobutyl-l-methylxanthine, forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester and H7, superfused in the presence and absence of caffeine and/or heptanol. indicate that neither the heptanol effects nor their potentiation by caffeine are mediated by cyclic nucleotides, adenosine receptors and kinase C. The data suggest a direct effect of anesthetics. possibly involving both polar and hydrophobic interactions with channel proteins. Xanthines and 4-aminopyridine may participate by influencing polar interactions. The potentiating effect of xanthines on cell-to-cell uncoupling by anesthetics may provide some clues on the nature of cardiac arrhythmias in patients treated with theophylline during halothane anesthesia.  相似文献   

5.
Millisecond mixing and quenching experiments were performed in order to study the rate of phosphorylation by Pi of the Ca2+-dependent ATPase of sarcoplasmic reticulum vesicles. A rapid phosphoenzyme formation was observed when the vesicles were preincubated in the absence of Ca2+ prior to the addition of Pi and Mg2+ to the medium, the half-time being in the range of 6 to 10 ms. A lag phase and a 5- to 10-fold slower rate of phosphoenzyme formation were observed when the enzyme was preincubated with Ca2+ prior to the addition to the reaction mixture of Pi, Mg2+, and an excess of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid. The rate of phosphoenzyme hydrolysis was measured either by the addition of Ca2+ or, in the absence of Ca2+, by tracing the hydrolysis of radioactive phosphoenzyme upon the addition of nonradioactive Pi. In the presence of Ca2+, the rate of phosphoenzyme hydrolysis was found to be one order of magnitude slower than the rate of hydrolysis measured in the absence of Ca2+. Different rates of phosphoenzyme formation and cleavage were found depending on whether sarcoplasmic reticulum vesicles or purified Ca2+-dependent ATPase were used. A transient phosphorylation by Pi was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, Mg2+, and excess of Ca2+. The enzyme was phosphorylated during the initial 100 ms, the phosphoenzyme formed being slowly hydrolyzed in the subsequent incubation intervals. In these conditions ATP synthesis was observed if ADP was added to the mixture 100 ms after starting the reaction. No transient phosphorylation by Pi was observed when the enzyme was preincubated with Ca2+. Synthesis of a small but significant amount of ATP was observed when the enzyme was preincubated in the absence of Ca2+ and then added to a medium containing Pi, ADP, Mg2+, and 20 mm CaCl2. This was not observed when the enzyme was preincubated in the presence of Ca2+.  相似文献   

6.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Chronic kidney disease (CKD) is associated with numerous metabolic and endocrine disturbances, including abnormalities of calcium and phosphate metabolism and an inflammatory syndrome. The latter occurs early in the course of CKD and contributes to the development and progression of vascular calcification. A few therapeutic strategies are today contemplated to target vascular calcification in patients with CKD: vitamin K2, calcimimetics and phosphate binders. However, none has provided complete prevention of vascular calcification and there is an urgent need for alternate efficient treatments. Recent findings indicate that tissue-nonspecific alkaline phosphatase (TNAP) may represent a very promising drug target due to its participation in mineralization by vascular smooth muscle cells. We report the synthesis of four levamisole derivatives having better inhibition property on TNAP than levamisole. Their IC50, Ki and water solubility have been determined. We found that the four inhibitors bind to TNAP in an uncompetitive manner and are selective to TNAP. Indeed, they do not inhibit intestinal and placental alkaline phosphatases. Survival MTT tests on human MG-63 and Saos-2 osteoblast-like cells have been performed in the presence of inhibitors. All the inhibitors are not toxic at concentrations that block TNAP activity. Moreover, they are able to significantly reduce mineralization in MG63 and Saos-2 osteoblast-like cells, indicating that they are promising molecules to prevent vascular calcification.  相似文献   

8.
In fura-2-loaded human periodontal ligament (HPDL) cells, bradykinin induced a rapidly transient increase and subsequently sustained increase in cytosolic Ca2+ ([Ca2+]i). When external Ca2+ was chelated by EGTA, the transient peak of [Ca2+]i was reduced and the sustained level was abolished, implying the Ca2+ mobilization consists of intracellular Ca2+ release and Ca2+ influx. Thapsigargin, a specific Ca2+-ATPase inhibitor for inositol 1,4,5-trisphosphate (1,4,5-1P3)-sensitive Ca2+ pool, induced an increase in [Ca2+]i in the absence of external Ca2+. After depletion of the intracellular Ca2+ pool by thapsigargin, the increase in [Ca2+]i induced by bradykinin was obviously reduced. Bradykinin also stimulated formation of inositol polyphosphates including 1,4,5-IP3. These results suggest that bradykinin stimulates intracellular Ca2+ release from the 1,4,5-1P3-sensitive Ca2+ pool. Bradykinin stimulated prostaglandin E2 (PGE2) release in the presence of external Ca2+, but not in the absence of external Ca2+. Ca2+ ionophore A23187 and thapsigargin evoked the release of PGE2 in the presence of external Ca2+ despite no activation of bradykinin receptors. These results indicate that bradykinin induces Ca2+ mobilization via activation of phospholipase C and PGE2 release caused by the Ca2+ influx in HPDL cells.  相似文献   

9.
Abstract: Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3–4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2+-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+], changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.  相似文献   

10.
It is well known that metabolic acidosis (MA), PGE2, and insulin stimulate H+ excretion in toad urinary bladder. In addition, PGE2 has been shown to increase in the toad bladder during MA. Our present experimental findings indicate that MA, PGE2 and insulin increase [Ca2+]i and this then may be the signal for stimulation of H+ excretion in this tissue. Isolated cells of the toad urinary bladder, obtained from toads in a chronic metabolic acidosis (MA) have a significantly higher intracellular Ca2+ ([Ca2+]i) than similar cells obtained from toads in normal acid-base balance. Protaglandin E2 (PGE2) (10−5M) was found to stimulate [Ca2+]i, in the same normal toad bladder cells, as determined by the fluorescence ratio technique using FURA 2/AM (P < 0.05). Insulin (100 mU/ml) was also found to stimulate [Ca2+]i, in toad bladder cells (P < 0.01). The increase in [Ca2+]i following PGE2 stimulation was not dependent on extracellular Ca2+, whereas the increase seen following insulin stimulation was dependent on extracellular Ca2+.  相似文献   

11.
12.
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca2+ and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca2+ excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca2+/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.  相似文献   

13.
A cDNA encoding a mouse B2 bradykinin (BK) receptor was stably transfected in Chinese hamster ovary (CHO) cells. In two resulting transformants, mouse B2 BK receptor was found to induce a twofold elevation in the inositol-1,4,5-trisphosphate level. In a pertussis toxin-insensitive manner, BK also produced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). The initial elevation in [Ca2+]i was abolished by thapsigargin pretreatment in Ca2+-free medium. The second phase was dependent on external Ca2+. The BK/inositol trisphosphate- and thapsigargin-sensitive Ca2+ stores required extracellular Ca2+ for refilling. Ca2+ influx induced by BK and thapsigargin was confirmed by Mn2+ entry through Ca2+ influx pathways producing Mn2+ quenching. Genistein, a tyrosine kinase inhibitor, partially decreased the BK-induced [Ca2+]i increase during the sustained phase and the rate of Mn2+ entry. BK had essentially no effect on the intracellular cyclic AMP level. The results suggest that the mouse B2 BK receptor couples to phospholipase C in CHO cells and that its activation results in biphasic [Ca2+]i increases, by mobilization of intracellular Ca2+ and store-depletion-mediated Ca2+ influx, the latter of which is tyrosine phosphorylation-dependent.  相似文献   

14.
The presence of Ca2+-ATPase activities with high-affinity sites for Ca2+ in brush border as well as basolateral plasma membranes of rat duodenal epithelium has been reported previously (Ghijsen, W.E.J.M. and van Os, C.H. (1979) Nature 279, 802–803). Since both plasma membranes contain alkaline phosphatase (EC 3.1.3.1), which also can be stimulated by Ca2+, the substrate specificity of Ca2+-induced ATP-hydrolysis has been studied to determine whether or not alkaline phosphatase and Ca2+-ATPase are two distinct enzymes. In basolateral fragments, the rate of Ca2+-dependent ATP-hydrolysis was greater than that of ADP, AMP and p-nitrophenylphosphate at Ca2+ concentrations below 25 μM. At 0.2 mM Ca2+ the rates of ATP, ADP, AMP and p-nitrophenylphosphate hydrolysis were not significantly different. In brush border fragments the rates of ATP, ADP and AMP hydrolysis were identical at low Ca2+, but at 0.2 mM Ca2+, Ca2+-induced hydrolysis of ADP and AMP was greater than either ATP or p-nitrophenylphosphate. Alkaline phosphatase in brush border and basolateral membranes was inhibited by 75% after addition of 2.5 mM theophylline. Ca2+-stimulated ATP hydrolysis at 1 μM Ca2+ was not sensitive to theophylline in basolateral fragments while the same activity in brush border fragments was totally inhibited. At 0.2 mM Ca2+, Ca2+-induced ATP hydrolysis in both basolateral and brush border membranes was sensitive to theophylline. Oligomycin and azide had no effect on Ca2+-stimulated ATP hydrolysis, either at low or at high Ca2+ concentrations. Chlorpromazine fully inhibited Ca2+-stimulated ATP hydrolysis in basolateral fragments at 5 μM Ca2+, while it had no effect in brush border fragments. From these results we conclude that, (i) Ca2+-ATPase and alkaline phosphatase are two distinct enzymes, (ii) high-affinity Ca2+-ATPase is exclusively located in basolateral plasma membranes, (iii) alkaline phosphatase activity, present on both sides of duodenal epithelium, is stimulated slightly by low Ca2+ concentrations, but this Ca2+-induced activity is inhibited by theophylline and shows no specificity with respect to ATP, ADP or AMP.  相似文献   

15.
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme crucial for bone matrix mineralization via its ability to hydrolyze extracellular inorganic pyrophosphate (ePPi), a potent mineralization inhibitor, to phosphate (Pi). By the controlled hydrolysis of ePPi, TNAP maintains the correct ratio of Pi to ePPi and therefore enables normal skeletal and dental calcification. In other areas of the body low ePPi levels lead to the development of pathological soft-tissue calcification, which can progress to a number of disorders. TNAP inhibitors have been shown to prevent these processes via an increase of ePPi. Herein we describe the use of a whole blood assay to optimize a previously described series of TNAP inhibitors resulting in 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent, selective and oral bioavailable compound that robustly inhibits TNAP in vivo.  相似文献   

16.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

17.
Stimulation of Ehrlich ascites tumor cells with leukotriene D4 (LTD4) within the concentration range 1–100 nm leads to a concentration-dependent, transient increase in the intracellular, free Ca2+ concentration, [Ca2+] i . The Ca2+ peak time, i.e., the time between addition of LTD4 and the highest measured [Ca2+] i value, is in the range 0.20 to 0.21 min in ten out of fourteen independent experiments. After addition of a saturating concentration of LTD4 (100 nm), the highest measured increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium is 260 ± 14 nm and the EC50 value for LTD4-induced Ca2+ mobilization is estimated at 10 nm. Neither the peptido-leukotrienes LTC4 and LTE4 nor LTB4 are able to mimic or block the LTD4-induced Ca2+ mobilization, hence the receptor is specific for LTD4. Removal of Ca2+ from the experimental buffer significantly reduces the size of the LTD4-induced increase in [Ca2+] i . Furthermore, depletion of the intracellular Ins(1,4,5)P3-sensitive Ca2+ stores by addition of the ER-Ca2+-ATPase inhibitor thapsigargin also reduces the size of the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-containing medium, and completely abolishes the LTD4-induced increase in [Ca2+] i in Ehrlich cells suspended in Ca2+-free medium containing EGTA. Thus, the LTD4-induced increase in [Ca2+] i in Ehrlich cells involves an influx of Ca2+ from the extracellular compartment as well as a release of Ca2+ from intracellular Ins(1,4,5)P3-sensitive stores. The Ca2+ peak times for the LTD4-induced Ca2+ influx and for the LTD4-induced Ca2+ release are recorded in the time range 0.20 to 0.21 min in four out of five experiments and in the time range 0.34 to 0.35 min in six out of eight experiments, respectively. Stimulation with LTD4 also induces a transient increase in Ins(1,4,5)P3 generation in the Ehrlich cells, and the Ins(1,4,5)P3 peak time is recorded in the time range 0.27 to 0.30 min. Thus, the Ins(1,4,5)P3 content seems to increase before the LTD4-induced Ca2+ release from the intracellular stores but after the LTD4-induced Ca2+ influx. Inhibition of phospholipase C by preincubation with U73122 abolishes the LTD4-induced increase in Ins(1,4,5)P3 as well as the LTD4-induced increase in [Ca2+] i , indicating that a U73122-sensitive phospholipase C is involved in the LTD4-induced Ca2+ mobilization in Ehrlich cells. The LTD4-induced Ca2+ influx is insensitive to verapamil, gadolinium and SK&F 96365, suggesting that the LTD4-activated Ca2+ channel in Ehrlich cells is neither voltage gated nor stretch activated and most probably not receptor operated. In conclusion, LTD4 acts in the Ehrlich cells via a specific receptor for LTD4, which upon stimulation initiates an influx of Ca2+, through yet unidentified Ca2+ channels, and an activation of a U73122-sensitive phospholipase C, Ins(1,4,5)P3 formation and finally release of Ca2+ from the intracellular Ins(1,4,5)P3-sensitive stores. Received: 9 February 1996/Revised: 15 August 1996  相似文献   

18.
Summary Human red cells containing low ATP and high Pi concentrations were suspended in media with and without 2mm Ca2+, and the incorporation of (32P)Pi into ATP was measured. There was some incorporation whatever the medium, but in every experiment there was an extra incorporation when the cells were in the Ca2+-containing medium. This extra incorporation was abolished by the ionophore A23187, which collapses the Ca2+ concentration gradient across the membranes, or by LaCl3, which blocks the Ca2+ pump. Starved and phosphate-loaded cells also show an uptake of Ca2+ which is not apparent in fresh cells. Results are consistent with the idea that Ca2+-dependent incorporation of Pi into ATP is catalyzed by the Ca2+ pump using energy derived from the Ca2+ concentration gradient.  相似文献   

19.
Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10?5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10?4M) and bradykinin (10?7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10?7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.  相似文献   

20.
In order to study the mechanisms whereby mediators of inflammation exert their exudative effects, we used isolated rat mesentery placed as a separation membrane between the two compartments of a diffusion cell. In this experimental arrangement, the permeability coefficient of albumin (PA) can be easily computed from the equilibration rate of 125I-labelled albumin added to one compartment. Histamine, bradykinin, serotonin and prostaglandins A1, A2, E1, E2, F and F all increased PA to some extent, the maximal values being approx. +60%. Dibutyryl-cyclic AMP, theophylline and isoproterenol also increased PA, thus suggesting involvement of cyclic AMP. Direct measurements of this nucleotide confirmed this hypothesis; furthermore, a linear relation between cyclic AMP levels and PA could be demonstrated. In contrast, cyclic GMP is probably not involved in the control of PA. Calcium-depleted tissues had a low PA (approx. 40% below controls), and did not respond to exogenous prostaglandin E1. These results suggest that transmesenteric passage of albumin is at least partly controlled by cyclic AMP and intracellular Ca2+ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号