首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants.  相似文献   

2.
Human cytochrome P450 3A4 forms a series of minor testosterone hydroxylation products in addition to 6 beta-hydroxytestosterone, the major product. One of these, formed at the next highest rate after the 6 beta- and 2 beta-hydroxy products, was identified as 1 beta-hydroxytestosterone. This product was characterized from a mixture of testosterone oxidation products using an HPLC-solid phase extraction-cryoprobe NMR/time-of-flight mass spectrometry system, with an estimated total of approximately 6 microg of this product. Mass spectrometry established the formula as C(19)H(29)O(3) (MH(+) 305.2080). The 1-position of the added hydroxyl group was established by correlated spectroscopy and heteronuclear spin quantum correlation experiments, and the beta-stereochemistry of the added hydroxyl group was assigned with a nuclear Overhauser correlated spectroscopy experiment (1 alpha-H). Of several human P450s examined, only P450 3A4 formed this product. The product was also formed in human liver microsomes.  相似文献   

3.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

4.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

5.
Three human cytochrome P450s, 3A4, 2C9 and 1A2, were each co-expressed with NADPH-P450 reductase in Escherichia coli and used in the preparative synthesis of drug metabolites. Low dissolved oxygen (DO) concentration (<1%) during expression was found to be critical for producing active P450s. Control of temperature, pH and glycerol supplementation in 10-L fermentations enhanced enzyme expression 31–86%. Additional improvements were obtained by altering media formulations, resulting in bicistronic expression levels of 890, 1,800 and 1,010 nmol/L for 3A4, 2C9 and 1A2, respectively. The P450 titers achieved in fermentors exceeded those in flask fermentations by 3- to 6-fold in this study and up to 10-fold when compared with previously reported literature [FEBS Lett (1996) 397:210–214, Arch Biochem Biophys (1996) 327:254–259, Biochem Pharmacol (1998) 55:1315–1325, Drug Metab Pharmacokinet (2003) 18:42–47, Nat Biotechnol (1997) 15:784–788; Metab Eng (2000) 2:115–125]. Intact cells and isolated membranes obtained from 10-L fermentations were used to establish an efficient bioconversion system for the generation of metabolites. To demonstrate the utility of this approach, known metabolites of the anabolic steroid testosterone, the anti-inflammatory agent diclofenac and the analgesic agent phenacetin, were generated using 3A4, 2C9 and 1A2, respectively. The reaction conditions were optimized for pH, temperature, DO concentration, use of co-solvent and glucose supplementation. Conversion yields of 29–93% were obtained from 1-L reactions, enabling isolation of 59 mg 6-hydroxytestosterone, 110 mg 4-hydroxydiclofenac and 88 mg acetaminophen.  相似文献   

6.
Human liver P450 NF25 (CYP3A4) had been previously expressed in Saccharomyces cerevisiae using the inducible GAL10-CYC1 promoter and the phosphoglycerate kinase gene terminator [Renaud, J. P., Cullin, C., Pompon, D., Beaune, P. and Mansuy, D. (1990) Eur. J. Biochem. 194, 889-896]. The use of an improved expression vector [Urban, P., Cullin, C. and Pompon, D. (1990) Biochimie 72, 463-472] increased the amounts of P450 NF25 produced/culture medium by a factor of five, yielding up to 10 nmol/l. The availability of recently developed host cells that simultaneously overexpress yeast NADPH-P450 reductase and/or express human liver cytochrome b5, obtained through stable integration of the corresponding coding sequences into the yeast genome, led to biotechnological systems with much higher activities of yeast-expressed P450 NF25 and with much better ability to form P450 NF25-iron-metabolite complexes. 9-fold, 8-fold, and 30-fold rate increases were found respectively for nifedipine 1,4-oxidation, lidocaine N-deethylation and testosterone 6 beta-hydroxylation between P450 NF25-containing yeast microsomes from the basic strain and from the strain that both overexpresses yeast NADPH-P450 reductase and expresses human cytochrome b5. Even higher turnovers (15-fold, 20-fold and 50-fold rate increases) were obtained using P450 NF25-containing microsomes from the yeast just overexpressing yeast NADPH-P450 reductase in the presence of externally added, purified rabbit liver cytochrome b5. This is explained by the fact that the latter strain contained the highest level of NADPH-P450 reductase activity. It is noteworthy that for the three tested substrates, the presence of human or rabbit cytochrome b5 always showed a stimulating effect on the catalytic activities and this effect was saturable. Indeed, addition of rabbit cytochrome b5 to microsomes from a strain expressing human cytochrome b5 did not further enhance the catalytic rates. The yeast expression system was also used to study the formation of a P450-NF25-iron-metabolite complex. A P450 Fe(II)-(RNO) complex was obtained upon oxidation of N-hydroxyamphetamine, catalyzed by P450-NF25-containing yeast microsomes. In microsomes from the basic strain expressing P450 NF25, 10% of the starting P450 NF25 was transformed into this metabolite complex, whereas more than 80% of the starting P450 NF25 led to complex formation in microsomes from the strain overexpressing yeast NADPH-P450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The one-electron autoxidation of human cytochrome P450 3A4   总被引:1,自引:0,他引:1  
Monomeric cytochrome P450 3A4 (CYP3A4), the most prevalent cytochrome P450 in human liver, can simultaneously bind one, two, or three molecules of substrates and effectors. The difference in the functional properties of such binding intermediates gives rise to homotropic and heterotropic cooperative kinetics of this enzyme. To understand the overall kinetic processes operating in CYP3A4, we documented the kinetics of autoxidation of the oxy-ferrous intermediate of CYP3A4 as a function of testosterone concentration. The rate of autoxidation in the presence of testosterone was significantly lower than that observed with no substrate present. Stability of the oxy-ferrous complex in CYP3A4 and the amplitude of the geminate CO rebinding increased significantly as a result of binding of just one testosterone molecule. In contrast, the slow phase in the kinetics of cyanide binding to the ferric CYP3A4 correlated with a shift of the heme iron spin state, which is only caused by the association of a second molecule of testosterone. Our results show that the first substrate binding event prevents the escape of diatomic ligands from the distal heme binding pocket, stabilizes the oxy-ferrous complex, and thus serves as an important modulator of the uncoupling channel in the cytochromes P450.  相似文献   

8.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

9.
The regioselectivity for progesterone hydroxylation by cytochrome P450 2B1 was re-engineered based on the x-ray crystal structure of cytochrome P450 2C5. 2B1 is a high K(m) progesterone 16alpha-hydroxylase, whereas 2C5 is a low K(m) progesterone 21-hydroxylase. Initially, nine individual 2B1 active-site residues were changed to the corresponding 2C5 residues, and the mutants were purified from an Escherichia coli expression system and assayed for progesterone hydroxylation. At 150 microm progesterone, I114A, F297G, and V363L showed 5-15% of the 21-hydroxylase activity of 2C5, whereas F206V showed high activity for an unknown product and a 13-fold decrease in K(m). Therefore, a quadruple mutant, I114A/F206V/F297G/V363L (Q), was constructed that showed 60% of 2C5 progesterone 21-hydroxylase activity and 57% regioselectivity. Based on their 2C5-like testosterone hydroxylation profiles, S294D and I477F alone and in combination were added to the quadruple mutant. All three mutants showed enhanced regioselectivity (70%) for progesterone 21-hydroxylation, whereas only Q/I477F had a higher k(cat). Finally, the remaining three single mutants, V103I, V367L, and G478V, were added to Q/I477F and Q/S294D/I477F, yielding seven additional multiple mutants. Among these, Q/V103I/S294D/I477F showed the highest k(cat) (3-fold higher than that of 2C5) and 80% regioselectivity for progesterone 21-hydroxylation. Docking of progesterone into a three-dimensional model of this mutant indicated that 21-hydroxylation is favored. In conclusion, a systematic approach to convert P450 regioselectivity across subfamilies suggests that active-site residues are mainly responsible for regioselectivity differences between 2B1 and 2C5 and validates the reliability of 2B1 models based on the crystal structure of 2C5.  相似文献   

10.
We report here on the genetic engineering of four new Escherichia coli tester bacteria, coexpressing human CYP1A1, CYP2A6, CYP3A4 or CYP3A5 with human NADPH cytochrome P450 reductase (RED) by a biplasmid coexpression system, recently developed to express human CYP1A2 in the tester strain MTC. The four new strains were compared for CYP- and RED-expression levels and CYP activities with the formerly developed CYP1A2 expressing strain. CYP1A2 and CYP2A6 were expressed at the highest, CYP1A1 at the lowest and CYP3A4 and CYP3A5 at intermediate expression levels. Membranes of all five tester bacteria demonstrated similar RED-expression levels, except for the two CYP3A-containing bacteria which demonstrated slightly increased RED-levels. CYP-activities were determined as ethoxyresorufin deethylase (CYP1A1 and CYP1A2), coumarin 7-hydroxylase (CYP2A6) and erythromycin N-demethylase (CYP3A4 and CYP3A5) activities. Reaction rates were comparable with those obtained previously for these CYP-enzymes, except for CYP3A5 which demonstrated a lower activity. Benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene demonstrated mutagenicity in the CYP1A1 expressing strain with mutagenic activities, respectively, approximately 10-fold and 100-fold higher as compared with those obtained with the use of rat liver S9 fraction. Aflatoxin B1 demonstrated a significant mutagenicity with all CYP expressing strains, albeit lower as compared to those obtained with the use of rat liver S9. CYP1A2 was approximately 3-fold more effective in generating a mutagenic response of AFB1 as compared to CYP3A4. CYP3A5 and CYP3A4 demonstrated comparable capacities in AFB1 bioactivation which was equal as found for CYP1A1. It is concluded that these four new strains contain stable CYP- and RED-expression, significant CYP-activities and demonstrated significant bioactivation activities with several diagnostic carcinogens.  相似文献   

11.
Biotransformation of deoxypodophyllotoxin to epipodophyllotoxin by three major human hepatic enzymes, CYP1A2, CYP2C9 and CYP3A4, heterologously expressed in E. coli DH5alpha, was investigated. It was shown that CYP3A4 catalysed the hydroxylation of deoxypodophyllotoxin into epipodophyllotoxin in yields up to 90%. The structure of the metabolite was determined using HPLC-MS and HPLC-SPE-NMR techniques. There was no detectable production of epipodophyllotoxin or podophyllotoxin by CYP1A2 and CYP2C9 enzymes. The CYP3A4 enzyme shows a distinctly different reactivity to deoxypodophyllotoxin compared to the semi-synthetic derivatives etoposide and teniposide, which are degraded by 3-O-demethylation. These findings demonstrate a novel system for the production of 2,7'-cyclolignans, starting from the easily accessible deoxypodophyllotoxin.  相似文献   

12.
Cytochrome P450 3A4 (CYP3A4) catalyzes the initial step in the clearance of many pharmaceuticals and foreign chemicals. The structurally diverse nature of CYP3A4 substrates complicates rational prediction of their metabolism and identification of potential drug interactions. The first molecular structures of human CYP3A4 were recently determined, revealing an active site of sufficient size and topography to accommodate either large ligands or multiple smaller ligands, as suggested by the heterotropic and homotropic cooperativity of the enzyme.  相似文献   

13.
Cytochrome P450 2E1 (CYP2E1) is an enzyme of major toxicological interest because it metabolizes various drugs, precarcinogens and solvents to reactive metabolites. In this study, human and cynomolgus monkey CYP2E1 cDNAs (humCYP2E1 and monCYP2E1, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate CYP2E1s. The enzymatic properties of CYP2E1 proteins were characterized by kinetic analysis of chlorzoxazone 6-hydroxylation and 4-nitrophenol 2-hydroxylation. humCYP2E1 and monCYP2E1 enzymes showed 94.3% identity in their amino acid sequences. The functional CYP content in yeast cell microsomes expressing humCYP2E1 was 38.4 pmol/mg protein. The level of monCYP2E1 was 42.7% of that of humCYP2E1, although no significant differences were statistically observed. The K(m) values of microsomes from human livers and yeast cells expressing humCYP2E1 for CYP2E1-dependent oxidation were 822 and 627 microM for chlorzoxazone 6-hydroxylation, and 422 and 514 microM for 4-nitrophenol 2-hydroxylation, respectively. The K(m) values of microsomes from cynomolgus monkey livers and yeast cells expressing monCYP2E1 were not significantly different from those of humans in any enzyme source. V(max) and V(max)/K(m) values of human liver microsomes for CYP2E1-dependent oxidation were 909 pmol/min/mg protein and 1250 nl/min/mg protein for chlorzoxazone 6-hydroxylation, and 1250 pmol/min/mg protein and 2990 nl/min/mg protein for 4-nitrophenol 2-hydroxylation, respectively. The kinetic parameter values of cynomolgus monkey livers were comparable to or lower than those of human liver microsomes (49.5-102%). In yeast cell microsomes expressing humCYP2E1, V(max) and V(max)/K(m) values for CYP2E1-dependent oxidation on the basis of CYP holoprotein level were 170 pmol/min/pmol CYP and 272 nl/min/pmol CYP for chlorzoxazone 6-hydroxylation, and 139 pmol/min/pmol CYP and 277 nl/min/pmol CYP for 4-nitrophenol 2-hydroxylation, respectively, and the kinetic parameters of monCYP2E1 exhibited similar values. These findings suggest that human and cynomolgus monkey CYP2E1 enzymes have high homology in their amino acid sequences, and that their enzymatic properties are considerably similar. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.  相似文献   

14.
Summary Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a C-terminal epoxide hydrolase activity and an N-terminal phosphatase activity. Arachidonic acid epoxides, previously suggested to be involved in apoptosis, oncogenesis and cell proliferation, are generated by cytochrome P450 epoxygenases and are good substrates of the sEH C-terminal domain. In addition, the N-terminal phosphatase domain hydrolyzes isoprenoid mono- and pyrophosphates, which are involved in cell signaling and apoptosis. Here we provide a comprehensive analysis of the distribution of sEH, CYP2C8, 2C9 and 2J2 in human neoplastic tissues using tissue micro-arrays. The human neoplastic tissue micro-arrays provide a well-controlled side by side analysis of a wide array of neoplastic tissues and their surrounding normal tissue controls. Many of the neoplastic tissues showed altered expression of these enzymes as compared to normal tissues. Altered expression was not limited to the neoplastic tissues but also found in the surrounding non-neoplastic tissues. For example, sEH expression in renal and hepatic malignant neoplasms and surrounding non-neoplastic tissues was found to be significantly decreased, whereas expression was found to be increased in seminoma as compared to normal tissues. Our study warrants further investigation of the role of altered expression of these enzymes in neoplastic tissues.  相似文献   

15.
Human hepatic cytochrome P450 3A4 (CYP3A4) was expressed in yeast Saccharomyces cerevisiae. While the expression level was high as compared with other human hepatic cytochrome P450s, CYP3A4 showed almost no catalytic activity toward testosterone. Coexpression of CYP3A4 with yeast NADPH-P450 reductase did not give a full activity. Low monooxygenase activity of CYP3A4 was attributed to the insufficient reduction of heme iron of CYP3A4 by NADPH-P450 reductase. To enhance the efficiency of electron transfer from NADPH-P450 reductase to CYP3A4, a fused enzyme was constructed between CYP3A4 and yeast NADPH-P450 reductase. The rapid reduction of the heme iron of the fused enzyme by NADPH was observed. The fused enzyme showed a high testosterone 6beta-hydroxylation activity with a sigmoidal velocity saturation curve. However, the coupling efficiency between NADPH utilization and testosterone 6beta-hydroxylation was only 10%. Finally, coexpression of the fused enzyme and human cytochrome b5 was examined. A significant decrease in the Km value and a remarkable increase in the coupling efficiency were observed. Substrate-induced spectra revealed that the dissociation constant of the fused enzyme for testosterone significantly decreased with coexpression of human cytochrome b5. These results strongly suggest that human cytochrome b5 directly interacts with the CYP3A4 domain of the fused enzyme and modifies the tertiary structure of substrate binding pocket, resulting in tight binding of the substrate and high coupling efficiency.  相似文献   

16.
Soluble epoxide hydrolase (sEH) hydrolyzes a wide variety of endogenous and exogenous epoxides. Many of these epoxides are believed to be formed by cytochrome P450 epoxygenases. Here we report the distribution of sEH and cytochrome P450 epoxygenases 2C8, 2C9, and 2J2 by immunohistochemistry. A large number of different tissues from different organs were evaluated using high-throughput tissue microarrays. sEH was found in the liver, kidney, and in many other organs, including adrenals, pancreatic islets, pituitary gland, lymphoid tissues, muscles, certain vascular smooth muscles, and epithelial cells in the skin, prostatic ducts, and the gastrointestinal tract. Immunolabeling for sEH was highly specific for particular tissues and individual cell types. CYP2C9 was also found in almost all of these organs and tissues, suggesting that 2C9 and sEH are very similar in their tissue-specific patterns of expression. CYP2C8 and 2J2 were also widely distributed in human tissues but were less frequently associated with sEH. The results suggest potentially distinct pathways of endogenous fatty acid epoxide production and hydrolysis in a variety of human tissues.  相似文献   

17.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

18.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

19.
Induction of P450 3A1 and P450 3A2 was studied in adult rat liver following treatment with a single high dose of dexamethasone (DEX). The increase of both P450 3A1 and 3A2 occurred at the level of mRNA as well as protein. P450 3A isozymes thus induced were catalytically active. No constitutive expression of P450 3A1 mRNA or protein was observed in males or females. Constitutive expression of P450 3A2 mRNA and protein was observed in males but not in females. Additionally, in females, P450 3A2 was almost nondetectable compared to that in males, at any dose of DEX. A time course study following DEX treatment showed that P450 3A1 mRNA and protein were detectable in both sexes at 12 hours, increased until 48 hours, and then declined. The decline was more rapid in males. P450 3A2 mRNA and protein increased as early as 3 hours, increased further up to 48 hours, and slowly declined thereafter. A dose-response study indicated that P450 3A1 mRNA and protein progressively increased in both sexes from a dose of 30 mg/kg. In contrast, P450 3A2 mRNA and protein in males did not increase up to a dose of 30 mg/kg but increased at higher doses. Total P450 content and P450 3A catalytic activity were also found to increase with time and dose. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
A computer model of human cytochrome P450 2E1 (CYP2E1) three-dimensional structure and active site was constructed based on homology with crystallographic coordinates of CYP2C5 and CYP2C9. A high degree of secondary structure homology for human, mouse, rat and rabbit CYP2E1 was demonstrated. The location of heme and the supporting alpha-helices was established. CYP2E1, CYP2C5 and CYP2C9 active sites are distinguished by pocket size and their amino acid residues composition. Key amino acid residues forming the active site channel and substrate-binding cavity are presented. Active site surface area and volume for CYP2E1, CYP2C5 and CYP2C9 were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号