首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Oxidation of the title complexes with ozone takes place by hydrogen atom, hydride, and electron transfer mechanisms. The reaction with (NH3)4(H2O)RhH2+ is a two electron process, believed to involve hydride transfer with a rate constant k = (2.2 ± 0.2) × 105 M−1 s−1 and an isotope effect kH/kD = 2. The oxidation of (NH3)4(H2O)RhOOH2+ to (NH3)4(H2O)RhOO2+ by an apparent hydrogen atom transfer is quantitative and fast, k = (6.9 ± 0.3) × 103 M−1 s−1, and constitutes a useful route for the preparation of the superoxo complex. The latter is also oxidized by ozone, but more slowly, k = 480 ± 50 M−1 s−1.  相似文献   

2.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetic of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam = 1,4,7,11-tetraazacyclotetradecane) has been examined spectrophotometrically. All kinetic data have been satisfactorily fitted by the rate law, R = (k1KOH[OH]2 + k2[OH])(1 + KOH[OH])−1(cis-[Ni(isocyclam)(H2O)2]2+ + [Ni(isocyclam)(OH)]+), where k2 = (3.40 ± 0.12) × 103 dm3 mol−1 s−1 is almost equal to kOH determined in buffer solution (lowly basic media), KOH = 22.7 ± 1.4 dm3 mol−1 at I (ionic strength) = 0.10 mol dm−3 (NaClO4 + NaOH) and 25.0 °C. Rate constants, k2 and KOH, are functions of ionic strength, giving a good evidence for an intermolecular pathway. The reaction follows a free-base-catalyzed mechanism where nitrogen inversion, solvation and ring conformational changes are occurred.  相似文献   

3.
Muscle glycogen phosphorylase (GP) plays an important role in muscle functions. Mercury has toxic effects in skeletal muscle leading to muscle weakness or cramps. However, the mechanisms underlying these toxic effects are poorly understood. We report that GP is irreversibly inhibited by inorganic (Hg2+) and organic (CH3Hg+) mercury (IC50 = 380 nM and kinact = 600 M−1 s−1 for Hg2+ and IC50 = 43 μM and kinact = 13 M−1 s−1 for CH3Hg+) through reaction of these compounds with cysteine residues of the enzyme. Our data suggest that the irreversible inhibition of GP could represent one of the mechanisms that contribute to mercury-dependent muscle toxicity.  相似文献   

4.
The folding mechanism and stability of dimeric formate dehydrogenase from Candida methylica was analysed by exposure to denaturing agents and to heat. Equilibrium denaturation data yielded a dissociation constant of about 10−13 M for assembly of the protein from unfolded chains and the kinetics of refolding and unfolding revealed that the overall process comprises two steps. In the first step a marginally stable folded monomeric state is formed at a rate (k1) of about 2 × 10−3 s−1 (by deduction k−1 is about10−4 s−1) and assembles into the active dimeric state with a bimolecular rate constant (k2) of about 2 × 104 M−1 s−1. The rate of dissociation of the dimeric state in physiological conditions is extremely slow (k−2 ∼ 3 × 10−7 s−1).  相似文献   

5.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   

6.
In order to examine the effects of coordinated hydroxide ion and free hydroxide ion in configurational conversion of a tetraamine macrocyclic ligand complex, the kinetics of the cis-to-planar interconversion of cis-[Ni(isocyclam)(H2O)2]2+ (isocyclam, 1,4,7,11-tetraazacyclotetradecane) has been studied spectrophotometrically in basic aqueous solution. The interconversion requires the inversion of one sec-NH center of the folded cis-complex to have the planar species. Kinetic data are satisfactorily fitted by the rate law, R = kOH[OH][cis-[Ni(isocyclam)(H2O)2]2+], where kOH = 3.84 × 103 dm3 mol−1 s−1 at 25.0 ± 0.1 °C with I = 0.10 mol dm−3 (NaClO4). The large ΔH, 61.7 ± 3.2 kJ mol−1, and the large positive ΔS, 30.2 ± 10.8 J K−1 mol−1, strongly support a free-base-catalyzed mechanism for the reaction.  相似文献   

7.
The kinetics of Ca2+-dependent conformational changes of human cardiac troponin (cTn) were studied on isolated cTn and within the sarcomeric environment of myofibrils. Human cTnC was selectively labeled on cysteine 84 with N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole and reconstituted with cTnI and cTnT to the cTn complex, which was incorporated into guinea pig cardiac myofibrils. These exchanged myofibrils, or the isolated cTn, were rapidly mixed in a stopped-flow apparatus with different [Ca2+] or the Ca2+-buffer 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid to determine the kinetics of the switch-on or switch-off, respectively, of cTn. Activation of myofibrils with high [Ca2+] (pCa 4.6) induced a biphasic fluorescence increase with rate constants of >2000 s−1 and ∼330 s−1, respectively. At low [Ca2+] (pCa 6.6), the slower rate was reduced to ∼25 s−1, but was still ∼50-fold higher than the rate constant of Ca2+-induced myofibrillar force development measured in a mechanical setup. Decreasing [Ca2+] from pCa 5.0-7.9 induced a fluorescence decay with a rate constant of 39 s−1, which was approximately fivefold faster than force relaxation. Modeling the data indicates two sequentially coupled conformational changes of cTnC in myofibrils: 1), rapid Ca2+-binding (kB ≈ 120 μM−1 s−1) and dissociation (kD ≈ 550 s−1); and 2), slower switch-on (kon = 390s−1) and switch-off (koff = 36s−1) kinetics. At high [Ca2+], ∼90% of cTnC is switched on. Both switch-on and switch-off kinetics of incorporated cTn were around fourfold faster than those of isolated cTn. In conclusion, the switch kinetics of cTn are sensitively changed by its structural integration in the sarcomere and directly rate-limit neither cardiac myofibrillar contraction nor relaxation.  相似文献   

8.
In biological systems, enzymes often use metal ions, especially Mg2+, to catalyze phosphodiesterolysis, and model aqueous studies represent an important avenue of examining the contributions of these ions to catalysis. We have examined Mg2+ and Ca2+ catalyzed hydrolysis of the model phosphodiester thymidine-5′-p-nitrophenyl phosphate (T5PNP). At 25 °C, we find that, despite their different Lewis acidities, these ions have similar catalytic ability with second-order rate constants for attack of T5PNP by hydroxide (kOH) of 4.1 × 10−4 M−1s−1 and 3.7 × 10−4 M−1s−1 in the presence of 0.30 M Mg2+ and Ca2+, respectively, compared to 8.3 × 10−7 M−1s−1 in the absence of divalent metal ion. Examining the dependence of kOH on [M2+] at 50 °C indicates different kinetic mechanisms with Mg2+ utilizing a single ion mechanism and Ca2+ operating by parallel single and double ion mechanisms. Association of the metal ion(s) occurs prior to nucleophilic attack by hydroxide. Comparing the kOH values reveals a single Mg2+ catalyzes the reaction by 1800-fold whereas a single Ca2+ ion catalyzes the reaction by only 90-fold. The second Ca2+ provides an additional 10-fold catalysis, significantly reducing the catalytic disparity between Mg2+ and Ca2+.  相似文献   

9.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

10.
Mammalian metallothioneins (MTs) are a family of small cysteine rich proteins believed to have a number of physiological functions, including both metal ion homeostasis and toxic metal detoxification. Mammalian MTs bind 7 Zn2+ or Cd2+ ions into two distinct domains: an N-terminal β-domain that binds 3 Zn2+ or Cd2+, and a C-terminal α-domain that binds 4 Zn2+ or Cd2+. Although stepwise metalation to the saturated M7-MT (where M = Zn2+ or Cd2+) species would be expected to take place via a noncooperative mechanism involving the 20 cysteine thiolate ligands, literature reports suggest a cooperative mechanism involving cluster formation prior to saturation of the protein. Electrospray ionization mass spectrometry (ESI-MS) provides this sensitivity through delineation of all species (Mn-MT, n = 0-7) coexisting at each step in the metalation process. We report modeled ESI-mass spectral data for the stepwise metalation of human recombinant MT 1a (rhMT) and its two isolated fractions for three mechanistic conditions: cooperative (where the binding affinities are: K1 < K2 < K3 < ··· < K7), weakly cooperative (where K1 = K2 = K3 = ··· = K7), and noncooperative, (where K1 > K2 > K3 > ··· > K7). Detailed ESI-MS metalation data of human recombinant MT 1a by Zn2+ and Cd2+ are also reported. Comparison of the experimental data with the predicted mass spectral data provides conclusive evidence that metalation occurs in a noncooperative fashion for Zn2+ and Cd2+ binding to rhMT 1a.  相似文献   

11.
Kinetic studies of X exchange on [AuX4] square-planar complexes (where X=Cl and CN) were performed at acidic pH in the case of chloride system and as a function of pH for the cyanide one. Chloride NMR study (330-365 K) gives a second-order rate law on [AuCl4] with the kinetic parameters: (k2Au,Cl)298=0.56±0.03 s−1 mol−1 kg; ΔH2‡ Au,Cl=65.1±1 kJ mol−1; ΔS2‡ Au,Cl=−31.3±3 J mol−1 K−1 and ΔV2 Au,Cl=−14±2 cm3 mol−1. The variable pressure data clearly indicate the operation of an Ia or A mechanism for this exchange pathway. The proton exchange on HCN was determined by 13C NMR as a function of pH and the rate constant of the three reaction pathways involving H2O, OH and CN were determined: k0HCN,H=113±17 s−1, k1HCN,H=(2.9±0.7)×109 s−1 mol−1 kg and k2HCN,H=(0.6±0.2)×106 s−1 mol−1 kg at 298.1 K. The rate law of the cyanide exchange on [Au(CN)4] was found to be second order with the following kinetic parameters: (k2Au,CN)298=6240±85 s−1 mol−1 kg, ΔH2 Au,CN=40.0±0.8 kJ mol−1, ΔS2 Au,CN=−37.8±3 J mol−1 K−1 and ΔV2 Au,CN=+2±1 cm3 mol−1. The rate constant observed varies about nine orders of magnitude depending on the pH and HCN does not act as a nucleophile. The observed rate constant of X exchange on [AuX4] are two or three orders of magnitude faster than the Pt(II) analogue.  相似文献   

12.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

13.
Specific salt effects were studied on the quenching reaction of excited [Ru(N-N)3]2+ (N-N=2,2-bipyridine (bpy), 1,10-phenanthrorine (phen)) and [Cr(bpy)3]3+ by [Cr(ox)3]3− (ox=oxalate ion) and [Cr(mal)3]3− (mal=malonate ion) in aqueous solutions as a function of alkali metal ions which were added for adjustment of ionic strength. The value of kq, quenching rate constants, and k1, energy transfer rate constant in encounter complex, is changed by the cations as the order of Li+ > Na+ > K+ ≈ Rb+ ? Cs+, although diffusion rate constants are not changed by the co-existing cations. Among the quenching reactions investigated in this work, a ratio of k1 values in the aqueous solutions whose ionic strength was adjusted with LiCl and KCl, k1LiCl/k1KCl, is larger for quenching systems of closely approached donor-acceptor pair than loosely bounded pair. These results indicate that co-existing alkali cation tunes the distance between donor and acceptor in encounter complex where energy transfer occurs.  相似文献   

14.
This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As2O5, AsV) at 0, 20, and 40 mg AsV L−1. Results from the ICP-OES analysis showed that at 20 mg AsV L−1, red flowered plants had 280 ± 11 and 98 ± 7 mg As kg−1 dry wt in roots and stems, respectively, while white flowered plants had 196 ± 30 and 103 ± 13 mg As kg−1 dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg AsV L−1, As was at 290 ± 77 and 151 ± 60 mg As kg−1 in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406 ± 36, 213 ± 12, and 177 ± 40 mg As kg−1 in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)3 species in both types of plants.  相似文献   

15.
The oxidation of thiocyanate by iron(V) (Fe(V)) was studied as a function of pH in alkaline solutions by a premix pulse radiolysis technique. The rates decrease with an increase in pH. The rate law for the oxidation of SCN by Fe(V) was obtained as −d[Fe(V)]/dt = k10{[H+]2/([H+]2 + K2[H+] + K2K3)}[Fe(V)][SCN], where k10 = 5.72 ± 0.19 × 106 M−1 s−1, pK2 = 7.2, and pK3 = 10.1. The reaction precedes via a two-electron oxidation, which converts Fe(V) to Fe(III). Thiocyanate reacts approximately 103× faster with iron(V) than does with iron(VI).  相似文献   

16.
Two 15N-labelled cis-Pt(II) diamine complexes with dimethylamine (15N-dma) and isopropylamine (15N-ipa) ligands have been prepared and characterised. [1H,15N] HSQC NMR spectroscopy is used to obtain the rate and equilibrium constants for the aquation of cis-[PtCl2(15N-dma)2] at 298 K in 0.1 M NaClO4 and to determine the pKa values of cis-[PtCl(H2O)(15N-dma)2]+ (6.37) and cis-[Pt(H2O)2(15N-dma)2]2+ (pKa1 = 5.17, pKa2 = 6.47). The rate constants for the first and second aquation steps (k1 = (2.12 ± 0.01) × 10−5 s−1, k2 = (8.7 ± 0.7) × 10−6 s−1) and anation steps (k−1 = (6.7 ± 0.8) × 10−3 M−1 s−1, k−2 = 0.043 ± 0.004 M−1 s−1) are very similar to those reported for cisplatin under similar conditions, and a minor difference is that slow formation of the hydroxo-bridged dimer is observed. Aquation studies of cis-[PtCl2(15N-ipa)2] were precluded by the close proximity of the NH proton signal to the 1H2O resonance.  相似文献   

17.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

18.
Fiber-optic biosensors have been studied intensively because they are very useful and important tools for monitoring biomolecular interactions. Here we describe a fluorescence detection fiber-optic biosensor (FD-FOB) using a sandwich assay to detect antibody-antigen interaction. In addition, the quantitative measurement of binding kinetics, including the association and dissociation rate constants for immunoglobulin G (IgG)/anti-mouse IgG, is achieved, indicating 0.38 × 106 M−1 s−1 for ka and 3.15 × 10−3 s−1 for kd. These constants are calculated from the fluorescence signals detected on fiber surface only where the excited evanescent wave can be generated. Thus, a confined fluorescence-detecting region is achieved to specifically determine the binding kinetics at the vicinity of the interface between sensing materials and uncladded fiber surface. With this FD-FOB, the mathematical deduction and experimental verification of the binding kinetics in a sandwich immunoassay provide a theoretical basis for measuring rate constants and equilibrium dissociation constants. A further measurement to study the interaction between human heart-type fatty acid-binding protein and its antibody gave the calculated kinetic constants ka, kd, and KD as 8.48 × 105 M−1 s−1, 1.7 × 10−3 s−1, and 2.0 nM, respectively. Our study is the first attempt to establish a theoretical basis for the florescence-sensitive immunoassay using a sandwich format. Moreover, we demonstrate that the FD-FOB as a high-throughput biosensor can provide an alternative to the chip-based biosensors to study real-time biomolecular interaction.  相似文献   

19.
Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)2L(NO)]n+ type, where L = SO32− and imidazole and bpy = 2,2′-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)2L(NOSR)]n+ and [Ru(bpy)2L(NOSR)2] (SR = thiol) leading to the final products [Ru(bpy)2L(H2O)]n+ and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k2(SR) = (2.20 ± 0.12) × 109 M− 1 s− 1 and k2(RSH) = (154 ± 2) M− 1 s− 1 for L = SO32− and k2(SR) = (1.30 ± 0.23) × 109 M− 1 s− 1 and k2(RSH) = (0.84 ± 0.02) M− 1 s− 1 for L = imidazole; while for glutathione they were k2(SR) = (6.70 ± 0.32) × 108 M− 1 s− 1 and k2(RSH) = 11.8 ± 0.3 M− 1 s− 1 for L = SO32− and k2(SR) = (2.50 ± 0.36) × 108 M− 1 s− 1 and k2(RSH) = 0.32 ± 0.01 M− 1 s− 1 for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N2O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.  相似文献   

20.
ADP-ribosyl cyclase and NAD+ glycohydrolase (CD38, E.C.3.2.2.5) efficiently catalyze the exchange of the nicotinamidyl moiety of NAD+, nicotinamide adenine dinucleotide phosphate (NADP+) or nicotinamide mononucleotide (NMN+) with an alternative base. 4′-Pyridinyl drugs (amrinone, milrinone, dismerinone and pinacidil) were efficient alternative substrates (kcat/KM = 0.9-10 μM−1 s−1) in the exchange reaction with ADP-ribosyl cyclase. When CD38 was used as a catalyst the kcat/KM values for the exchange reaction were reduced two or more orders of magnitude (0.015-0.15 μM−1 s−1). The products of this reaction were novel dinucleotides. The values of the equilibrium constants for dinucleotide formation were determined for several drugs. These enzymes also efficiently catalyze the formation of novel mononucleotides in an exchange reaction with NMN+, kcat/KM = 0.05-0.4 μM−1 s−1. The kcat/KM values for the exchange reaction with NMN+ were generally similar (0.04-0.12 μM−1 s−1) with CD38 and ADP-ribosyl cyclase as catalysts. Several novel heterocyclic alternative substrates were identified as 2-isoquinolines, 1,6-naphthyridines and tricyclic bases. The kcat/KM values for the exchange reaction with these substrates varied over five orders of magnitude and approached the limit of diffusion with 1,6-naphthyridines. The exchange reaction could be used to synthesize novel mononucleotides or to identify novel reversible inhibitors of CD38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号