首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mononuclear nickel(II) complexes with the third-generation quinolone antibacterial agent sparfloxacin in the absence or presence of nitrogen donor heterocyclic ligands (1,10-phenanthroline or 2,2′-bipyridine) have been synthesized and characterized. The experimental data suggest that sparfloxacin acts as deprotonated bidentate ligand coordinated to Ni(II) ion through the ketone and carboxylato oxygens. The crystal structure of (1,10-phenanthroline)bis(sparfloxacinato) nickel(II), 2 has been determined by X-ray crystallography. The cyclic voltammograms of the complexes recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they can bind to CT DNA by the intercalative binding mode. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and 2 exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The antimicrobial activity of the complexes has been tested on three different microorganisms and has revealed that the inhibition provided by the complexes is slightly decreased in comparison to free sparfloxacin. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   

2.
Nickel(II) complexes with the first-generation quinolone antibacterial agent flumequine in the presence or absence of nitrogen donor heterocyclic ligands (4-benzylpyridine, pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been structurally characterized by physicochemical and spectroscopic techniques. The experimental data suggest that flumequine acts as deprotonated bidentate ligand coordinated to Ni(II) through the carboxylato and ketone oxygen atoms. The crystal structures of bis(4-benzylpyridine)bis(flumequinato)nickel(II) 2, (2,2′-bipyridine)bis(flumequinato)nickel(II) 4 and (1,10-phenanthroline)bis(flumequinato)nickel(II) 5 have been determined by X-ray crystallography and are the first crystal structures of flumequinato complexes reported. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes bind to CT DNA and bis(aqua)bis(flumequinato)nickel(II) exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The cyclic voltammograms of the complexes recorded in DMSO solution and in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that in the presence of CT DNA they bind to CT DNA by the intercalative binding mode. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.  相似文献   

3.
The neutral mononuclear zinc complexes with the quinolone antibacterial drug oxolinic acid in the absence or presence of a nitrogen donor heterocyclic ligand 2,2′-bipyridine or 1,10-phenanthroline have been synthesized and characterized. The experimental data suggest that oxolinic acid is on deprotonated mode acting as a bidentate ligand coordinated to the metal ion through the ketone and one carboxylato oxygen atoms. The crystal structures of (chloro)(oxolinato)(2,2′-bipyridine)zinc(II), 2, and bis(oxolinato)(1,10-phenanthroline)zinc(II), 3, have been determined with X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA-binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that complex 3 exhibits the ability to displace the DNA-bound EB indicating that it binds to DNA in strong competition with EB.  相似文献   

4.
The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2′-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid.  相似文献   

5.
The nickel(II) complexes with the quinolone antibacterial agents oxolinic acid, flumequine, enrofloxacin and sparfloxacin in the presence of the N,N′-donor heterocyclic ligand 2,2′-bipyridylamine have been synthesized and characterized. The quinolones act as bidentate ligands coordinated to Ni(II) ion through the pyridone oxygen and a carboxylato oxygen. The crystal structure of [(2,2′-bipyridylamine)bis(sparfloxacinato)nickel(II)] has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA with [(2,2′-bipyridylamine)bis(flumequinato)nickel(II)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the [Ni(quinolonato)2(2,2′-bipyridylamine)] complexes have been evaluated in comparison to the previously reported Ni(II) quinolone complexes [Ni(quinolonato)2(H2O)2], [Ni(quinolonato)2(2,2′-bipyridine)] and [Ni(quinolonato)2(1,10-phenanthroline)]. The quinolones and their Ni(II) complexes have been tested for their antioxidant and free radical scavenging activity. They have been also tested in vitro for their inhibitory activity against soybean lipoxygenase.  相似文献   

6.
Cobalt(II) complexes with the non-steroidal anti-inflammatory drug naproxen in the presence or absence of nitrogen-donor heterocyclic ligands (pyridine, 2,2′-bipyridine or 1,10-phenanthroline) have been synthesized and characterized with physicochemical and spectroscopic techniques. The deprotonated naproxen acts as monodentate ligand coordinated to Co(II) ion through a carboxylato oxygen. The crystal structure of [bis(aqua)bis(naproxenato)bis(pyridine)cobalt(II)], 2 has been determined by X-ray crystallography. The EPR spectrum of complex 2 in frozen solution reveals that it retains its structure. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and [(2,2′-bipyridine)bis(methanol)bis(naproxenato)cobalt(II)] exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes recorded in DMSO solution and in the presence of CT DNA in 1/2 DMSO/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution have shown that they can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. Naproxen and its cobalt(II) complexes exhibit good binding propensity to human or bovine serum albumin proteins having relatively high binding constant values. The antioxidant activity of the compounds has been evaluated indicating their high scavenging activity against hydroxyl free radicals and superoxide radicals.  相似文献   

7.
Copper(II) complexes with the non-steroidal anti-inflammatory drugs (NSAIDs) naproxen and diclofenac have been synthesized and characterized in the presence of nitrogen donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine). Naproxen and diclofenac act as deprotonated ligands coordinated to Cu(II) ion through carboxylato oxygens. The crystal structures of (2,2′-bipyridine)bis(naproxenato)copper(II), , (1,10-phenanthroline)bis(naproxenato)copper(II), and bis(pyridine)bis(diclofenac)copper(II), have been determined by X-ray crystallography. The UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with (2,2′-bipyridine)bis(naproxenato)copper(II) exhibiting the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) indicates that the complexes can displace the DNA-bound EB suggesting strong competition with EB. The cyclic voltammograms of the complexes recorded in the presence of CT DNA have shown that the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. The NSAID ligands and their complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the previously reported complexes [Cu2(naproxenato)4(H2O)2], [Cu2(diclofenac)4(H2O)2] and [Cu(naproxenato)2(pyridine)2(H2O)] have been also evaluated. The dinuclear complexes exhibit similar affinity for CT DNA as the 2,2′-bipyridine or 1,10-phenanthroline containing complexes. The pyridine containing complexes exhibit the lowest affinity for CT DNA and the lowest ability to displace EB from its EB-DNA complex.  相似文献   

8.
Copper(II) complexes with the non-steroidal anti-inflammatory drug diflunisal in the presence of N,N-dimethylformamide or nitrogen donor heterocyclic ligands (pyridine, 1,10-phenanthroline, 2,2′-bipyridine or 2,2′-bipyridylamine) have been synthesized and characterized. The deprotonated diflunisal ligands are coordinated to Cu(II) ion through carboxylato oxygen atoms. The crystal structures of [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] 1 and [bis(diflunisal)bis(pyridine)copper(II)], 2 have been determined by X-ray crystallography and are the first reported crystal structures of diflunisal complexes. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) suggests binding of the complexes to CT DNA with the dinuclear [tetrakis(diflunisal)bis(N,N-dimethylformamide)dicopper(II)] compound exhibiting the highest binding constant, Kb. Intercalative binding mode may also be concluded using cyclic voltammetry and solution viscosity measurements of the complexes in the presence of CT DNA. Competitive studies with ethidium bromide (EB) indicate that the complexes can displace the DNA-bound EB suggesting competition with EB. Diflunisal and its complexes exhibit good binding propensity to human or bovine serum albumin protein showing relatively high binding constant values.  相似文献   

9.
Five novel metal complexes of the quinolone antibacterial agent ciprofloxacin with Mn2+, Fe3+, Co2+, Ni2+ and have been prepared and characterized with physicochemical, spectroscopic and electrochemical techniques. In all these complexes, ciprofloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone oxygen and one carboxylate oxygen. The central metal in each complex is six-coordinate and a slightly distorted octahedral geometry is proposed. The lowest energy model structures of the Mn2+, Fe3+ and complexes have been determined with molecular modeling calculations. The cyclic voltammograms of the complexes have been recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution and the corresponding redox potentials have been estimated. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that the complexes bind to DNA probably via intercalation in strong competition with EB for the intercalative binding site.  相似文献   

10.
Zinc mononuclear complexes with the second-generation quinolone antibacterial drug enrofloxacin in the absence or presence of a nitrogen donor heterocyclic ligand 1,10-phenanthroline or 2,2′-bipyridine have been synthesized and characterized. Enrofloxacin is on deprotonated mode acting as a bidentate ligand coordinated to zinc ion through the ketone and a carboxylato oxygen atoms. The crystal structure of bis(enrofloxacinato)(1,10-phenanthroline)zinc(II), 2, has been determined by X-ray crystallography. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies. UV studies of the interaction of the complexes with DNA have shown that they can bind to CT DNA and the DNA binding constants have been calculated. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB for the intercalative binding site. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   

11.
Four related ruthenium(III) complexes, with the formula mer-[RuCl3(dmso)(N−N)] (dmso = dimethyl sulfoxide; N−N = 2,2′-bipyridine (1), 1,10-phenantroline (2), dipyrido[3,2-f:2′,3′-h]quinoxaline (3) and dipyrido[3,2-a:2′,3′-c]phenazine (4)), have been reported. Complexes 3 and 4 are newly synthesized and characterized by X-ray diffraction. The hydrolysis process of 1-4 has been studied by UV-vis measurement, and it has been found that the extension of the N−N ligands can increase the stability of the complexes. The binding of these complexes with DNA has been investigated by plasmid cleavage assay, competitive binding with ethidium bromide (EB), DNA melting experiments and viscosity measurements. The DNA binding affinity is increased with the extension of the planar area of the N−N ligands, and complex 4 shows an intercalative mode of interaction with DNA. The in vitro anticancer activities of these compounds are moderate on the five human cancer cell lines screened.  相似文献   

12.
Five metal complexes of the third-generation quinolone antimicrobial agent sparfloxacin with Fe3+, VO2+, Mn2+, Ni2+ and have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, sparfloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylate oxygen. The complexes are six-coordinate with distorted octahedral geometry. For VO(sparfloxacinato)2(H2O) the axial position, trans to the vanadyl oxygen, is occupied by a ketone oxygen atom. Molecular mechanics calculations have been performed in order to propose a model for the structure of each complex. The antimicrobial activity of the complexes has been tested against three microorganisms showing that they exhibit lower activity than free sparfloxacin. UV spectroscopic titration with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA and the binding constants to CT DNA have been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that they bind to CT DNA probably by the intercalative binding mode. Fluorescence competitive studies with ethidium bromide (EB) have revealed the ability of the complexes to displace the DNA-bound EB. The complexes exhibit good binding propensity to human and bovine serum albumin proteins having relatively high binding constant values.  相似文献   

13.
A series of mixed ligand Ru(II) complexes of 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) as primary ligand and 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), pyridine (py) and NH3 as co-ligands have been prepared and characterized by X-ray crystallography, elemental analysis and 1H NMR and electronic absorption spectroscopy. The X-ray crystal structure of the complex [Ru(phen)2(bpy)]Cl2 reveals a distorted octahedral coordination geometry for the RuN6 coordination sphere. The DNA binding constants obtained from the absorption spectral titrations decrease in the order, tris(5,6-dmp)Ru(II) > bis(5,6-dmp)Ru(II) > mono(5,6-dmp)Ru(II), which is consistent with the trend in apparent emission enhancement of the complexes on binding to DNA. These observations reveal that the DNA binding affinity of the complexes depend upon the number of 5,6-dmp ligands and hence the hydrophobic interaction of 5,6-dimethyl groups on the DNA surface, which is critical in determining the DNA binding affinity and the solvent accessibility of the exciplex. Among the bis(5,6-dmp)Ru(II) complexes, those with monodentate py (4) or NH3 (5) co-ligands show DNA binding affinities slightly higher than the bpy and phen analogues. This reveals that they interact with DNA through the co-ligands while both the 5,6-dmp ligands interact with the exterior of the DNA surface. All these observations are supported by thermal denaturation and viscosity measurements. Two DNA binding modes - surface/electrostatic and strong hydrophobic/partial intercalative DNA interaction - are suggested for the mixed ligand complexes on the basis of time-resolved emission measurements. Interestingly, the 5,6-dmp ligands promote aggregation of the complexes on the DNA helix as a helical nanotemplate, as evidenced by induced CD signals in the UV region. The ionic strength variation experiments and competitive DNA binding studies on bis(5,6-dmp)Ru(II) complexes reveal that EthBr and the partially intercalated and kinetically inert [Ru(phen)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) complexes revert the CD signals induced by exciton coupling of the DNA-bound complexes with the free complexes in solution.  相似文献   

14.
New mixed polypyridyl {NMIP = 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo-[4′,5′-f][1,10]-phenanthroline, dmb = 4,4′-dimethyl-2,2′-bipyridine, bpy = 2,2′-bipyridine} ruthenium(II) complexes [Ru(dmb)2(NMIP)]2+ (1) and [Ru(bpy)2(NMIP)]2+ (2) have been synthesized and characterized. The binding of these complexes to calf thymus DNA (CT-DNA) has been investigated with spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that both complexes could bind to DNA via partial intercalation from the minor/major groove. In addition, both complexes have been found to promote the single-stranded cleavage of plasmid pBR 322 DNA upon irradiation. Under comparable experimental conditions compared with [Ru(phen)2(NMIP)]2+, during the course of the dialysis at intervals of time, the CD signals of both complexes started from none, increased to the maximum magnitude, then no longer changed, and the activity of effective DNA cleavage dependence upon concentration degree lies in the following order: [Ru(phen)2NMIP]2+ > complex 2 > complex 1.  相似文献   

15.
The interactions between a series of platinum complexes, including (pyridyl)(6-phenyl-2,2-bipyridine)platinum(II) hexafluorophosphate (1), three dinuclear bis[(6-phenyl-2,2-bipyridine)platinum(II)] complexes (24), and (4-aminopyridine)(4,6-diphenyl-2,2-bipyridine)platinum(II) perchlorate (5) with DNA have been investigated. All Pt(II) complexes, except 5, were demonstrated to be DNA intercalators, based on viscosity measurements. Absorption and fluorescence titration results indicated that the addition of a phenyl ring to the 6-phenyl-2,2-bipyridine ligand dramatically reduced the DNA binding of the Pt(II) complex 5. The dinuclear complexes 24 exhibited multiple binding modes of mono/bisintercalation and groove binding, as revealed by viscosity and fluorescence titration measurements. While complexes 24 bound to DNA with significantly enhanced affinities as compared to 1, compounds 1 and 24 showed similar IC50 values against a panel of cancer cell lines. In addition, these complexes showed similar cellular uptakes. The results indicated that the cytotoxicity of these (6-phenyl-2,2-bipyridine)platinum compounds may not be mediated through DNA binding but may involve interacting mechanisms with cellular components other than DNA.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Abbreviations AO acridine orange - ampy 4-aminopyridine - bipy 2,2-bipyridine - bp base pair - CNN 6-phenyl-2,2-bipyridine - ctDNA calf thymus DNA - EB ethidium bromide - EI electron ionization - en ethylenediamine - FAB fast atomic bombardment - H33342 Hoechst 33342 - IC50 inhibitory concentration 50% - ICP-AES inductively coupled plasma–atomic emission spectroscopy - MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-tetrazolium bromide - 4-PhCNN 4,6-diphenyl-2,2-bipyridine - phen 1,10-phenanthroline - terpy 2,2:6,2-terpyridine - Tris tris(hydroxymethyl)aminomethane  相似文献   

16.
17.
We report the synthesis of a new ligand, 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine, optimised for binding to copper(I) and with pendant functionality that can eventually be developed into metallodendritic structures. The synthesis and photophysical properties of complexes with copper(I) and ruthenium(II) are reported. The solid state structure of the complex [Cu(1)2][PF6] · MeCN (1 = 4,4′-bis(3,5-dimethoxyphenyl)-6,6′-dimethyl-2,2′-bipyridine) is also described.  相似文献   

18.
The neutral mononuclear copper complexes with the quinolone antibacterial drug oxolinic acid in the presence or not of a nitrogen donor heterocyclic ligand 1,10-phenanthroline, 2,2'-bipyridine or 2,2'-dipyridylamine have been synthesized and characterized with infrared, UV-visible and electron paramagnetic resonance spectroscopies. The experimental data suggest that oxolinic acid acts as a deprotonated bidentate ligand and is coordinated to the metal ion through the pyridone and one carboxylate oxygen atoms. The crystal structure of (chloro)(1,10-phenanthroline)(oxolinato) copper(II), 2, has been determined with X-ray crystallography. For all complexes a distorted square pyramidal environment around Cu(II) is suggested. The EPR (electron paramagnetic resonance) behavior of 2 in aqueous solutions indicates mixture of dimeric and monomeric species. The investigation of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and showed that the complexes are bound to calf-thymus DNA. The antimicrobial activity of the complexes has been tested on three different microorganisms. The complexes show a decreased biological activity in comparison to the free oxolinic acid.  相似文献   

19.
A series of mixed-ligand neutral nickel(II) complexes of the general formula [Ni(i-MNT)(2a-5mt)2] (1), [Ni(i-MNT)(2a-2tzn)2] (2) and [Ni(i-MNT)(Im)2] (3), [where i-MNT2? = the dianion of 1,1-dicyano-2,2-ethylenedithiolate, 2a-5mt = 2-amino-5-methyl thiazole, 2a-2tzn = 2-amino-2-thiazoline and Im = imidazole] were prepared and characterized with elemental analyses, spectroscopic (IR, UV–vis) methods, magnetic susceptibility, molar conductivity and cyclic voltammetry measurements. The magnetic data, the electronic spectra and the electrical conductivity measurements indicated mononuclear neutral complexes with square-planar geometry. The X-ray analysis of [Ni(i-MNT)(2a-5mt)2] shows the nickel atom being fourfold coordinated with the two sulfur atoms of the dithiolate (i-MNT) ligand and the endocyclic nitrogen atoms from the two 2a-5mt ring giving rise to a slightly distorted square-planar arrangement. The cyclic voltammograms of the complexes have been recorded and the corresponding redox potentials have been estimated. The DNA-binding studies of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. Both studies have shown that the complexes can bind to CT-DNA by the intercalative and the electrostatic binding mode. Competitive binding studies with ethidium bromide (EB) with fluorescence spectroscopy have also shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that they can bind to DNA in strong competition with EB.  相似文献   

20.
A new set of supramolecular complexes, [Ni(DPAP-SHZ)(2,2′-bipy)CH3OH] (1), [Zn(DPAP-SHZ)(2,2′-bipy)CH3OH] (2) and [Cu(DPAP-SHZ)(2,2′-bipy)] · 2CH2Cl2 (3) (DPAP-SHZ = 1,3-diphenyl-4-(salicylidene hydrazide)-acetyl-pyrazolone-5, 2,2′-bipy = 2,2′-bipyridine) have been synthesized and characterized by elemental analysis, TG-DTA, IR spectroscopy and X-ray crystallography. The X-ray diffraction analyses of the complexes show that the Ni(II) ion and Zn(II) ion centers are six-coordinated while the Cu(II) ion center is five-coordinated. The three supramolecular complexes contain the same ligands, namely DPAP-SHZ and 2,2′-bipy. However, their hydrogen bonds are significantly different, and this variation apparently is responsible for the dissimilar structures of the three supramolecular complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号