首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A distinct thimet peptidase from rat liver mitochondria   总被引:1,自引:0,他引:1  
Thimet peptidase has been purified from rat liver mitochondria and found to share the characteristics of a thiol-dependent metallo-endopeptidase previously described for an enzyme in the cytosolic fraction from rat testis: inhibition by EDTA, reactivation by Zn2+, requirement of dithiothreitol for maximal and stable activity, and inhibition by N-ethylmaleimide. The Ki for inhibition by N-[1-(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Phe-p-aminobenzoic acid is 2.6 microM, 100-fold higher than the value for the cytosolic form. The mitochondrial form is not inhibited by antisera against the cytosolic form, and the two forms of the enzyme show quantitative differences in substrate specificity. The name thimet peptidase II is suggested for the enzyme from rat mitochondria.  相似文献   

2.
Arachidonoyl-serotonin inhibits in a mixed-type manner the metabolism of the endocannabinoid anandamide by the enzyme fatty acid amidohydrolase. In the present study, compounds related to arachidonoyl-serotonin have been synthesised and investigated for their ability to inhibit anandamide hydrolysis by this enzyme in rat brain homogenates. Removal of the 5-hydroxy from the serotonin head group of arachidonoyl-serotonin produced a compound (N-arachidonoyltryptamine) that was a 2.3-fold weaker inhibitor of anandamide hydrolysis, but which also produced its inhibition by a mixed-type manner (Ki(slope) 1.3 microM; Ki(intercept) 44 microM). Replacement of the amide linkage in this compound by an ester group further reduced the potency. In contrast, replacement of the arachidonoyl side chain by a linolenoyl side chain did not affect the observed potency. N-(Fur-3-ylmethyl) arachidonamide (UCM707), N-(fur-3-ylmethyl)linolenamide and N-(fur-3-ylmethyl)oleamide inhibited anandamide hydrolysis with pI50 values of 4.53, 5.36 and 5.25, respectively. The linolenamide derivative was also found to be a mixed-type inhibitor. It is concluded that the 5-hydroxy group of arachidonoyl-serotonin contributes to, but is not essential for, inhibitory potency at fatty acid amidohydrolase.  相似文献   

3.
Purification and characterization of trimming glucosidase I from pig liver   总被引:5,自引:0,他引:5  
Trimming glucosidase I has been purified about 400-fold from pig liver crude microsomes by fractional salt/detergent extraction, affinity chromatography and poly(ethylene glycol) precipitation. The purified enzyme has an apparent molecular mass of 85 kDa, and is an N-glycoprotein as shown by its binding to concanavalin A-Sepharose and its susceptibility to endo-beta-N-acetylglucosaminidase (endo H). The native form of glucosidase I is unusually resistant to non-specific proteolysis. The enzyme can, however, be cleaved at high, that is equimolar, concentrations of trypsin into a defined and enzymatically active mixture of protein fragments with molecular mass of 69 kDa, 45 kDa and 29 kDa, indicating that it is composed of distinct protein domains. The two larger tryptic fragments can be converted by endo H to 66 kDa and 42 kDa polypeptides, suggesting that glucosidase I contains one N-linked high-mannose sugar chain. Purified pig liver glucosidase I hydrolyzes specifically the terminal alpha 1-2-linked glucose residue from natural Glc3-Man9-GlcNAc2, but is inactive towards Glc2-Man9-GlcNAc2 or nitrophenyl-/methyl-umbelliferyl-alpha-glucosides. The enzyme displays a pH optimum close to 6.4, does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (Ki approximately 2.1 microM), N,N-dimethyl-1-deoxynojirimycin (Ki approximately 0.5 microM) and N-(5-carboxypentyl)-1-deoxynojirimycin (Ki approximately 0.45 microM), thus closely resembling calf liver and yeast glucosidase I. Polyclonal antibodies raised against denatured pig liver glucosidase I, were found to recognize specifically the 85 kDa enzyme protein in Western blots of crude pig liver microsomes. This antibody also detected proteins of similar size in crude microsomal preparations from calf and human liver, calf kidney and intestine, indicating that the enzymes from these cells have in common one or more antigenic determinants. The antibody failed to cross-react with the enzyme from chicken liver, yeast and Volvox carteri under similar experimental conditions, pointing to a lack of sufficient similarity to convey cross-reactivity.  相似文献   

4.
Chlorpromazine (25 microM) and trifluoperazine (25 microM) inhibited by 5-fold the activity of CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme for phosphatidylcholine biosynthesis, in rat liver cytosol. Addition of saturating amounts of rat liver phospholipid to the enzyme assay rapidly reversed the drug-mediated inhibition. Three-fold or greater concentrations of these drugs were required to produce a 50% inhibition of the microsomal cytidylyltransferase. Incubation of rat hepatocytes with 20 microM trifluoperazine or chlorpromazine did not inhibit phosphatidylcholine biosynthesis. These results provide additional evidence for the hypothesis that the active form of cytidylyltransferase is on the endoplasmic reticulum and the enzyme in cytosol appears to be latent.  相似文献   

5.
1. The effect of calmodulin antagonists on the rate of palmitate oxidation by isolated rat liver mitochondria was studied. 2. In the presence of 100 microM amitriptyline, chlorpromazine, prenylamine, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, palmitate oxidation was inhibited by 17, 34, 49, 31 and 37%, respectively. 3. The degree of inhibition of palmitate oxidation exerted by these chemical compounds did not appear to correlate appreciably with changes in mitochondrial membrane fluidity.  相似文献   

6.
The possible involvement of protein kinase C and Ca2+ metabolism in the proteolytic enzyme release from schistosome cercariae was studied. Cercariae were placed in dechlorinated tap water containing 0.37 mM calcium in the small glass petri dish and exposed to the stimuli (linoleic acid, phorbol esters, and Ca2+ ionophore) with or without inhibitors of protein kinase C or Ca2+ metabolism. The proteolytic activity of incubation medium of cercariae thus treated was measured by the azocoll assay. The penetration response of cercariae induced by linoleic acid, a physiological stimulus, was mimicked by phorbol esters. When exposed to phorbol esters, 0.02 to 2 microM of 12-O-tetradecanoylphorbol-13-acetate (TPA) and 0.2 to 2 microM of phorbol-12,13-dibutyrate (PDBu), cercariae ceased the swimming movement, began a rhythmic thrusting of the anterior tip of the parasite, and released the proteolytic enzyme, but they did not shed the tails. Lowering Ca2+ in water by addition of 5 mM ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), phorbol ester-induced release of enzyme was completely inhibited. Phorbol ester-induced release of enzyme was partially inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, at a concentration of 100 microM. H-7 alone, at a concentration of 100 microM, did not affect the swimming movement of cercariae. The cercariae were stimulated to release the enzyme by high concentrations (10 and 100 microM) of the Ca2+ ionophore, A23187, but enzyme was not released by low concentrations (0.5 and 1 microM) of this drug. Cercariae exposed to A23187 behaved differently from those exposed to phorbol esters. They ceased swimming, showed strong muscle contraction, and shed their tail. A23187 stimulated cercariae to release the enzyme in the water containing 5 mM EGTA. A23187-induced enzyme release was not inhibited by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, trifluoperazine (TFP), a better calmodulin antagonist on schistosome, or by verapamil, a Ca2+ channel blocker. Linoleic acid-induced release of enzyme was partially inhibited by 0.5 and 5 mM of EGTA and by 1 to 100 microM of H-7. While it was not inhibited by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), inhibitors of cyclic nucleotide-dependent protein kinase which were used as negative controls of H-7, W-7, TFP, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an intracellular Ca2+ antagonist, and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The concentration of p-tyramine in the rat striatum was increased significantly by intraperitoneal injection of phenelzine (5 or 100 mg/kg). Unlike other monoamine oxidase (MAO) inhibitors, phenelzine had no effect on p-tyramine levels in the first 1-2 h following injection. The high dose of phenelzine increased the p-tyramine levels much more than the low dose. In addition, the high dose of phenelzine increased striatal p-tyrosine levels significantly 12 h after injection. Further studies showed that phenelzine inhibited the tyrosine aminotransferase activity of rat liver homogenates; the IC50 was 50 microM. Phenelzine also inhibited the aromatic L-amino acid decarboxylase activity of rat brain homogenate with an IC50 of 25 microM. Following intraperitoneal injection of 100 mg/kg phenelzine, the initial concentration of phenelzine in the striatum appears to be high enough to inhibit aromatic L-amino acid decarboxylase. It is suggested that the multiple enzyme inhibition caused by administration of high doses of phenelzine accounts for its unusual effects on striatal p-tyramine levels compared with other MAO inhibitors, i.e., its initial lack of effect on p-tyramine levels followed later by very large increases in p-tyramine levels.  相似文献   

8.
Inhibition of acetoacetyl-CoA synthetase from rat liver by fatty acyl-CoAs   总被引:1,自引:0,他引:1  
The activity of acetoacetyl-CoA synthetase from rat liver was found to be negatively regulated by coenzyme A, fatty acyl-CoAs and acetoacetyl-CoA in vitro. With increasing concentrations of coenzyme A (substrate inhibition occurring at concentrations higher than 50 microM) the pH optimum shifted toward the acidic side (7.5-8.5 with 5 microM coenzyme A and 6.5-7.0 with 500 microM coenzyme A), in parallel with progressively decreasing enzyme activity. Fatty acyl-CoAs of various chain lengths dose-dependently inhibited acetoacetyl-CoA synthetase from rat liver, but much less effectively a similar enzyme from a bacterium, Zoogloea ramigera I-16-M. Palmitoyl-CoA, the most potent inhibitor of the rat liver enzyme, with an apparent Ki value of 9.8 microM, apparently inhibited the enzyme below its critical micellar concentration, not due to its detergent action. Acetoacetyl-CoA showed product inhibition with a Ki value of 15 microM. These results suggest a possible physiological regulation mechanism for this enzyme with respect to fatty acid biosynthesis.  相似文献   

9.
Preincubation of rat islets of Langerhans with the potent inhibitors of islet transglutaminase activity, monodansylcadaverine (30-100 microM) and N-(5-aminopentyl)-2-naphthalenesulphonamide (100-200 microM), led to significant inhibition of glucose-stimulated insulin release from islets. In contrast, the respective N'-dimethylated derivatives of these two compounds, which did not inhibit islet transglutaminase activity, were much less effective as inhibitors of glucose-stimulated insulin release. None of the compounds inhibited rat spleen protein kinase C activity at concentrations which gave rise to inhibition of glucose-stimulated insulin release. When tested for their effects on calmodulin-stimulated bovine heart phosphodiesterase activity, of the compounds that inhibited insulin release, only monodansylcadaverine did not act as an effective antagonist of calmodulin at concentrations (up to 50 microM) that gave rise to significant inhibition of glucose-stimulated insulin release. Furthermore, at 50 microM, monodansylcadaverine did not inhibit methylation of islet lipids. The inhibition of glucose-stimulated insulin release by monodansylcadaverine is therefore likely to be attributable to its interference with islet transglutaminase activity. The sensitivity of islet transglutaminase to activation by Ca2+ was investigated by using a modified assay incorporating dephosphorylated NN'-dimethylcasein as a substrate protein. The Km for Ca2+ obtained (approx. 3 microM) was an order of magnitude lower than previously reported for the islet enzyme [Bungay, Potter & Griffin (1984) Biochem. J. 219, 819-827]. Mg2+ (2 mM) was found to have little effect on the sensitivity of the enzyme to Ca2+. Investigation of the endogenous substrate proteins of islet transglutaminase by using the Ca2+-dependent incorporation of [14C]methylamine into proteins of islet homogenates demonstrated that most of the incorporated radiolabel was present in cross-linked polymeric aggregates which did not traverse 3% (w/v) acrylamide gels. The radiolabelled polymeric aggregates were present in 71 000 g-sedimented material of homogenates, and their formation was transglutaminase-mediated. These findings provide new evidence for the involvement of islet transglutaminase in the membrane-mediated events necessary for glucose-stimulated insulin release.  相似文献   

10.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

11.
12.
Inhibition of estrogen 2-hydroxylase   总被引:1,自引:0,他引:1  
The effect of diethylstilbestrol (DES), oestradiol (E2), primaquine (PQ), chloroquine (CQ), 1-methylimidazole (1-MeI), metronidazole (MET) and antipyrine (AP) has been studied on rat liver microsomal metabolism of ethinyloestradiol (EE2) by measuring the formation of 2-hydroxyethinyl-oestradiol (2-OHEE2) using reverse phase high performance liquid chromatography. Using a substrate concentration of 25 microM, PQ, DES and E2 produced the most marked effect with IC50 values of 75, 100 and 100 microM respectively whereas CQ, MET and 1-MeI were less potent with IC50 values of 335, 448 and 448 microM. AP inhibited EE2 metabolism to only a small extent and an IC50 value was not calculated. PQ (75 microM) inhibited the enzyme non-competitively decreasing the Vmax from 1.8 to 1.0 nmol/min/mg protein. E2 (100 microM) inhibited the enzyme competitively with an increase in the Km from 17.9 to 55.6 microM. The results of this study indicate that steroidal and non-steroidal compounds have different affinities for EE2 2-hydroxylase.  相似文献   

13.
The regulation of GTP cyclohydrolase I would lead to the regulation of tetrahydrobiopterin, an important cofactor for synthesis of neurotransmitters. In an attempt to extend a previous finding [Bellahsene, Dhondt, & Farriaux (1984) Biochem. J. 217, 59-65] that GTP cyclohydrolase I of rat liver is inhibited by subnanomolar concentrations of reduced biopterin and sepiapterin, we found that this could not be verified with the enzyme from mouse liver, fruit-fly (Drosophila) heads or, indeed, from rat liver. It was shown, however, that 12 microM-sepiapterin inhibited mouse liver GTP cyclohydrolase I. Another compound, namely 6-acetyldihydrohomopterin, was also employed in the present study to explore its effect on enzymes that lead to its synthesis in Drosophila and for effects on mammalian systems; at 2-5 microM this compound was shown to stimulate one form of mouse liver GTP cyclohydrolase I and then to inhibit at higher concentrations (40 microM). Neither sepiapterin nor 6-acetyldihydrohomopterin caused any effect on the Drosophila head enzyme. On the other hand, the sigmoid GTP concentration curve for the Drosophila enzyme may indicate a regulatory characteristic of this enzyme. Another report, on the lower level of GTP cyclohydrolase I in mutant mouse liver [McDonald, Cotton, Jennings, Ledley, Woo & Bode (1988) J. Neurochem. 50, 655-657], was confirmed and extended. Instead of having 10% activity, we find that the hph-1 mouse mutant has less than 2% activity in the liver. These studies demonstrate that micromolar levels of reduced pterins may have regulatory effects on GTP cyclohydrolase I and that a mouse mutant is available that has low enough activity to be considered as a model for human atypical phenylketonuria.  相似文献   

14.
Sodium pseudomonate was shown to be a powerful competitive inhibitor of Escherichia coli B isoleucyl-tRNA synthetase (Ile-tRNA synthetase). The antibiotic competitively inhibits (Ki 6 nM; cf. Km 6.3 microM), with respect top isoleucine, the formation of the enzyme . Ile approximately AMP complex as measured by the pyrophosphate-exchange reaction, and has no effect on the transfer of [14C]isoleucine from the enzyme . [14C]Ile approximately AMP complex to tRNAIle. The inhibitory constant for the pyrophosphate-exchange reaction was of the same order as that determined for the inhibition of the overall aminoacylation reaction (Ki 2.5 nM; cf. Km 11.1 microM). Sodium [9'-3H]pseudomonate forms a stable complex with Ile-tRNA synthetase. Gel-filtration and gel-electrophoresis studies showed that the antibiotic is only fully released from the complex by 5 M-urea treatment or boiling in 0.1% sodium dodecyl sulphate. The molar binding ratio of sodium [9'-3H]pseudomonate to Ile-tRNA synthetase was found to be 0.85:1 by equilibrium dialysis. Aminoacylation of yeast tRNAIle by rat liver Ile-tRNA synthetase was also competitively inhibited with respect to isoleucine, Ki 20 microM (cf. Km 5.4 microM). The Km values for the rat liver and E. coli B enzymes were of the same order, but the Ki for the rat liver enzyme was 8000 times the Ki for the E. coli B enzyme. This presumably explains the low toxicity of the antibiotic in mammals.  相似文献   

15.
In this study precision-cut liver slices have been used to evaluate the effects of the flavone tangeretin, the flavonoid glycoside naringin and the flavanone naringenin (the aglycone derived from naringin) on xenobiotic-induced genotoxicity. Liver slices were cultured for 24 h in medium containing [3H]thymidine and the test compounds and then processed for autoradiographic determination of unscheduled DNA synthesis (UDS). The cooked food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) markedly induced UDS in cultured human liver slices and both 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1) induced UDS in cultured rat liver slices. Tangeretin (20 and 50 microM) was found to be a potent inhibitor of 5 and 50 microM PhIP-induced UDS in human liver slices, whereas 20 and 50 microM naringenin was ineffective and naringin only inhibited genotoxicity at a concentration of 1000 microM. In rat liver slices 50 microM tangeretin inhibited 10 and 50 microM 2-AAF-induced UDS, whereas 50 microM naringenin and 100 and 1000 microM naringin were ineffective. None of the three flavonoids examined inhibited 5 microM AFB1-induced UDS in rat liver slices. The inhibition of PhIP- and 2-AAF-induced UDS by tangeretin is probably attributable to the inhibition of the human and rat cytochrome P-450 isoforms which are responsible for the bioactivation of these two genotoxins. Although flavonoids can modulate xenobiotic-induced genotoxicity in human and rat liver slices, any protective effect is dependent on the particular combination of genotoxin and flavonoid examined. These results demonstrate that cultured precision-cut liver slices may be utilised as an in vitro model system to examine the modulation of xenobiotic-induced genotoxicity by flavonoids and other dietary components.  相似文献   

16.
Glucosidase I, the enzyme catalyzing the first step of N-linked oligosaccharide processing, has been purified from calf liver crude membranes [H. Hettkamp, G. Legler, and E. Bause, (1984) Eur. J. Biochem. 142, 85-90]. Binding experiments with concanavalin A-Sepharose suggest that glucosidase I is a glycoprotein with high-mannose carbohydrate chain(s). The enzyme has a subunit molecular mass of approximately 83 kDa and specifically hydrolyzes the terminal alpha-1,2-linked glucose residue from the natural Glc3-Man9-GlcNAc2 oligosaccharide. Studies with a variety of substrates modified in the aglycon moiety suggest that the Glc2 branch rather than the more distant domains of the substrate molecule are important for binding and hydrolysis. Glucosidase I does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (dNM) and its N-alkyl derivatives. Ki values range from 0.07 microM for N-methyl-dNM to 1.0 microM for dNM, measured at the pH-optimum of enzyme activity. The pH dependence of inhibition indicates that the cationic form of the inhibitors is the active species. Comparison of the Ki for N-decanoyl-dNM (approximately 70 microM) with that of N-decyl-dNM (approximately 0.4 microM) suggests that electrostatic interactions at the catalytic site of the enzyme are important for inhibitor binding. 1-Deoxymannojirimycin, previously assumed to be a specific mannosidase inhibitor, as well as its N-methyl and N-5-carboxypentyl derivatives, inhibit glucosidase I with Ki values around 190, 17, and 100 microM, respectively. This apparent lack of specificity shows that in vivo experiments on N-glycoprotein processing as well as the interpretation of results with these mannosidase inhibitors may give misleading results when these compounds are used in the millimolar range.  相似文献   

17.
N-Methyl-, N-ethyl-, N-propyl-, N-butyl-, N,N-dimethyl- and N,N'-dimethylputrescines were assayed as inhibitors of ornithine decarboxylase (EC 4.1.1.17) from rat liver and from Escherichia coli. They were found to be poor inhibitors, with the exception of N-propylputrescine and N,N-dimethylputrescine, which were inhibitory at 25 mM. A homologous series of 1-alkylputrescines ranging from 1-methylputrescine (1,4-diaminopentane) to 1-heptylputrescine (1,4-diaminoundecane) was assayed for effect on the activity of ornithine decarboxylase from the same sources. 1-Methylputrescine (5 mM) inhibited the mammalian enzyme, while the higher homologues showed significantly less inhibitory activity. When assayed on the bacterial enzyme, 1-methylputrescine (5 mM) was not inhibitory, while the higher homologues showed inhibitory effects. At higher concentrations, 1-methylputrescine and 1-heptylputrescine were the best inhibitors of these series of rat liver ornithine decarboxylase. When 1-methylputrescine, 2-methylputrescine, 1,2-dimethylputrescine, 1,3-dimethylputrescine and 1,4-dimethylputrescine were assayed as inhibitors of the decarboxylase, 2-methylputrescine was found to be the best inhibitor of the rat liver enzyme, while 1,3-dimethylputrescine was the best inhibitor of the bacterial enzyme. 1,4-Dimethylputrescine (2,5-diaminohexane) did not inhibit the enzyme from either source. Both, 2-methylputrescine and 1-methylputrescine, as well as the 1,2- and 1,3-dimethylputrescines were competitive inhibitors of the enzyme, and a Ki of 1 mM was obtained for 2-methylputrescine when the rat liver decarboxylase was used. N-Methyl, 1-methyl and 2-methylputrescines were found to inhibit in vivo the activity of rat liver ornithine decarboxylase which had been previously induced by thioacetamide treatment. 2-Methylputrescine (50 mumol/100 g body weight) was found to be the best in vivo inhibitor (93% inhibition), while putrescine under similar conditions inhibited 56% of the enzymatic activity.  相似文献   

18.
Purification and properties of mouse liver coproporphyrinogen oxidase   总被引:2,自引:0,他引:2  
Coproporphyrinogen oxidase was purified to homogeneity from mouse liver. The specific activity of the pure enzyme was 3500 nmol.h-1.mg-1; its apparent molecular mass (35 kDa) was confirmed by immunological characterization of the enzyme in a trichloroacetic-acid-precipitated total-liver-protein extract. The native enzyme appeared to be a dimer of 70 kDa as determined by gel filtration under nondenaturating conditions. The Km value for coproporphyrinogen III was 0.3 microM. The purified enzyme was activated by neutral detergents and phospholipids (affecting both Vmax and Km) but inhibited by ionic detergents. Reactivity toward sulfhydryl agents suggested the possible involvement of (an) SH group(s) for the activity. When compared to the previously purified coproporphyrinogen oxidases (from bovine liver and yeast), the mouse liver coproporphyrinogen oxidase appears to share many common catalytic properties with both enzymes. However, its apparent molecular mass is very different from that of the bovine liver enzyme (71.6 kDa) but identical to that found for the yeast (Saccharomyces cerevisiae) enzyme.  相似文献   

19.
Homogenates of rat neostriatum hydrolysed cGMP faster than cAMP at both high (100 microM) and low (1 microM) substrate concentrations, although the hydrolysis of both nucleotides exhibited similar kinetic properties. Kinetic analysis of the effect of substrate concentration on the rate of cAMP and cGMP hydrolysis gave results characteristic of a negatively cooperative enzyme species, with two apparent Km's for each nucleotide. The ratio between the Vmax of the high Km form and the Vmax of the low Km form was similar in various subcellular fractions of neostriatal tissue, in a preparation of synaptic membranes from whole brain, and in homogenates of other brain regions, including both neural-rich and glial-rich tissues. In homogenates of neostriatum cAMP could almost completely block cGMP hydrolysis and vice versa. The kinetics of this inhibition were competitive at low (1 microM) substrate concentrations, and non-competitive at high (100 microM) substrate concentrations. Various phosphodiesterase inhibitors failed to preferentially inhibit the hydrolysis of either nucleotide at high or low nucleotide concentrations. Preliminary studies of the effect of a Ca(2+)-dependent endogenous activator preparation on the hydrolysis of cyclic nucleotides in homogenates of rat neostriatum showed a specific activation of cGMP hydrolysis at low nucleotide concentrations. The rate of cGMP hydrolysis at 1 microM substrate concentration was doubled in the presence of the activator preparation and 100 microM-CaCl2, while cGMP hydrolysis at 100 microM or cAMP hydrolysis at both 1 microM and 100 microM remained unaffected. These observations raise the possibility that cAMP and cGMP may be hydrolysed by the same enzyme in rat neostriatum, and that an endogenous activating factor may determine the relative affinities of the enzyme for the two nucleotides.  相似文献   

20.
1. The deoxyfluoro-d-glucopyranose 6-phosphates are substrates for both yeast and rat liver glucose 6-phosphate dehydrogenase. 2. The V(max.) values (relative to d-glucose 6-phosphate) were determined for a series of d-glucose 6-phosphate derivatives substituted at C-2. The V(max.) values decreased with increasing electronegativity of the C-2 substituent. This is consistent with a mechanism involving hydride-ion transfer. 3. 2-Deoxy-d-arabino-hexose 6-phosphate (2-deoxy-d-glucose 6-phosphate) showed substrate inhibition with the yeast enzyme but not with the rat liver enzyme. 4. 2-Amino-2-deoxy-d-glucose 6-phosphate (d-glucosamine 6-phosphate) was a substrate for the yeast enzyme but a competitive inhibitor for the rat liver enzyme. 5. Lineweaver-Burk plots for the d-glucose 6-phosphate derivatives with yeast glucose 6-phosphate dehydrogenase were biphasic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号