首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Punishment is an important deterrent against cheating in cooperative interactions. In humans, the severity of cheating affects the strength of punishment which, in turn, affects the punished individual's future behaviour. Here, we show such flexible adjustments for the first time in a non-human species, the cleaner wrasse (Labroides dimidiatus), where males are known to punish female partners. We exposed pairs of cleaners to a model client offering two types of food, preferred 'prawn' items and less-preferred 'flake' items. Analogous to interactions with real clients, eating a preferred prawn item ('cheating') led to model client removal. We varied the extent to which female cheating caused pay-off reduction to the male and measured the corresponding severity of male punishment. Males punished females more severely when females cheated during interactions with high value, rather than low value, model clients; and when females were similar in size to the male. This pattern may arise because, in this protogynous hermaphrodite, cheating by similar-sized females may reduce size differences to the extent that females change sex and become reproductive competitors. In response to more severe punishment from males, females behaved more cooperatively. Our results show that punishment can be adjusted to circumstances and that such subtleties can have an important bearing on the outcome of cooperative interactions.  相似文献   

2.
Grutter AS 《Current biology : CB》2004,14(12):1080-1083
The most commonly asked question about cooperative interactions is how they are maintained when cheating is theoretically more profitable. In cleaning interactions, where cleaners remove parasites from apparently cooperating clients, the classical question asked is why cleaner fish can clean piscivorous client fish without being eaten, a problem Trivers used to explain reciprocal altruism. Trivers suggested that predators refrain from eating cleaners only when the repeated removal of parasites by a particular cleaner results in a greater benefit than eating the cleaner. Although several theoretical models have examined cheating behavior in clients, no empirical tests have been done (but see Darcy ). It has been observed that cleaners are susceptible to predation. Thus, cleaners should have evolved strategies to avoid conflict or being eaten. In primates, conflicts are often resolved with conflict or preconflict management behavior. Here, I show that cleaner fish tactically stimulate clients while swimming in an oscillating "dancing" manner (tactile dancing) more when exposed to hungry piscivorous clients than satiated ones, regardless of the client's parasite load. Tactile dancing thus may function as a preconflict management strategy that enables cleaner fish to avoid conflict with potentially "dangerous" clients.  相似文献   

3.
If cooperation often involves investment, then what specific conditions prevent selection from acting on cheaters that do not invest? The mutualism between the Indo‐Pacific cleaner wrasse Labroides dimidiatus and its reef fish clients has been a model system to study conflicts of interest and their resolution. These cleaners prefer client mucus over ectoparasites – that is, they prefer to cheat – but punishment and partner switching by clients enforce cooperative behaviour by cleaners. By contrast, clients of Caribbean cleaning gobies (Elacatinus spp.) do not to use punishment or partner switching. Here, we test the hypothesis that the behavioural differences between these two cleaner fish systems are caused by differences in cleaner foraging preferences. In foraging choice experiments, we offered broadstripe cleaning gobies Elacatinus prochilos client‐derived parasitic isopods, client mucus and a control food item. The cleaning gobies significantly preferred ectoparasites over mucus or the control item, which contrasts with cleaner wrasses. We propose that the low level of cleaner–client conflict arising from cleaning goby foraging preferences explains the observed lack of strategic partner control behaviour in the clients of cleaning gobies.  相似文献   

4.
Geographical variation in the outcome of interspecific interactions has a range of proximate ecological causes. For instance, cleaning interactions between coral reef fishes can result in benefits for both the cleaner and its clients. However, because both parties can cheat and because the rewards of cheating may depend on the local abundance of ectoparasites on clients, the interaction might range from exploitative to mutualistic. In a comparative analysis of behavioural measures of the association between the cleaner fish Labroides dimidiatus and all its client species, we compared cleaning interactions between two sites on the Great Barrier Reef that differ with respect to mean ectoparasite abundance. At Heron Island, where client fish consistently harbour fewer ectoparasites, client species that tended to pose for cleaners were more likely to receive feeding bites by cleaners than client species that did not pose for cleaners. This was not the case at Lizard Island, where ectoparasites are significantly more abundant. Client fish generally spent more time posing for cleaners at Lizard Island than their conspecifics at Heron Island. However, fish at Heron Island were inspected longer on average by cleaners than conspecifics at Lizard Island, and they incurred more bites and swipes at their sides per unit time from cleaners. These and other differences between the two sites suggest that the local availability of ectoparasites as a food source for cleaners may determine whether clients will seek cleaning, and whether cleaners will feed on parasites or attempt to feed on client mucus. The results suggest that cleaning symbiosis is a mosaic of different outcomes driven by geographical differences in the benefits for both participants.  相似文献   

5.

Cleaning symbioses among coral reef fishes are highly variable. Cleanerfishes vary in how much they cooperate with (i.e. remove only ectoparasites) or cheat (i.e. bite healthy tissue, scales or mucus) on their fish clients. As a result, clients use various strategies to enforce cooperation by cleaners (e.g. punishment or partner choice), and cleaners use tactile stimulation to manipulate cheated client behaviour. We provide the first detailed observations of cleaning behaviour of the redlip cleaner wrasse Labroides rubrolabiatus and ask where interactions with this cleanerfish lie on the continuum of cleanerfish honesty, client control, and cleanerfish manipulation. Ninety per cent of redlip cleaner wrasses took jolt-inducing cheating bites from their clients, but they did so at a very low rate (~ 2 jolts per 100 s inspection). Retaliatory chases by clients were uncommon. Three-quarters (30 of 40) of cleaner wrasses used tactile stimulation on their clients, but rarely did so to reconcile with cheated clients. Instead, the majority (70%) of tactile stimulation events targeted a passing client that then stopped for inspection. The relationship between redlip cleaner wrasses and their clients appears to be less conflictual than those documented in other Labroides cleanerfishes. Future studies should test whether this low level of conflict is consistent across space and time and is underpinned by a preference for ectoparasites over other client-gleaned items. As an active cleaner that appears to take few cheating bites from their clients, L. rubrolabiatus has the potential to be as important a driver of fish health and community structure on coral reefs as its better-known relatives.

  相似文献   

6.
Supply and demand largely determine the price of goods on human markets. It has been proposed that in animals, similar forces influence the payoff distribution between trading partners in sexual selection, intraspecific cooperation and interspecific mutualism. Here we present the first experimental evidence supporting biological market theory in a study on cleaner fish, Labroides dimidiatus . Cleaners interact with two classes of clients: choosy client species with access to several cleaners usually do not queue for service and do not return if ignored, while resident client species with access to only one cleaning station do queue or return. We used plexiglas plates with equal amounts of food to simulate these behaviours of the two client classes. Cleaners soon inspected 'choosy' plates before 'resident' plates. This supports previous field observations that suggest that client species with access to several cleaners exert choice to receive better (immediate) service.  相似文献   

7.
Humans are more likely to help those who they have observed helping others previously. Individuals may thus benefit from being altruistic without direct reciprocity of recipients but due to gains in 'image' and associated indirect reciprocity. I suggest, however, that image-scoring individuals may be exploitable by cheaters if pay-offs vary between interactions. I illustrate this point with data on cleaner-client reef fish interactions. I show the following: (i) there is strong variation between cleaners with respect to cheating of clients (i.e. feeding on client tissue instead of parasites); (ii) clients approach cleaners, that they observe cooperating with their current client and avoid cleaners that they observe cheating; (iii) cleaners that cheat frequently are avoided more frequently than more cooperative cleaners (iv) cleaners that cheat frequently behave altruistically towards their smallest client species; (v) altruistic acts are followed by exploitative interactions. Thus, it appears that cleaners indeed have an image score, which selects for cooperative cleaners. However, cheating cleaners use altruism in potentially low-pay-off interactions to deceive and attract image-scoring clients that will be exploited.  相似文献   

8.
There is a wealth of game theoretical approaches to the evolution and maintenance of cooperation between unrelated individuals and accumulating empirical tests of these models. This contrasts strongly with our lack of knowledge on proximate causes of cooperative behaviour. Marine cleaning mutualism has been used as a model system to address functional aspects of conflict resolution: client reef fish benefit from cleaning interactions through parasite removal, but cleaner fish Labroides dimidiatus prefer client mucus. Hence, feeding against their preference represents cooperative behaviour in cleaners. Cleaners regularly cheat non‐predatory clients while they rarely cheat predatory clients. Here, we asked how precisely cleaners can adjust service quality from one interaction to the next. We found that non‐predatory clients receive a better service if the previous client was a predator than if the previous client was a non‐predator. In a related laboratory experiment, a hand‐net used as a stressor resulted in cleaners feeding more against their preference in subsequent interactions. The combination of the cleaners’ behaviour in the two studies shows that the cleaners’ service quality for a given client species is not fixed, but it can be manipulated. The results suggest that short‐term stress is one factor that causes cleaners to increase their levels of cooperation, a hypothesis that is amenable to further experiments manipulating the endocrine system.  相似文献   

9.
Cheating is common in cooperative interactions, but its occurrence can be controlled by various means ranging from rewarding cooperators to active punishment of cheaters. Punishment occurs in the mutualism involving the cleanerfish Labroides dimidiatus and its reef fish clients. When L. dimidiatus cheats, by taking scales and mucus rather than ectoparasites, wronged clients either chase or withhold further visits to the dishonest cleaner, which leads to more cooperative future interactions. Punishment of cheating L. dimidiatus may be effective largely because these cleaners are strictly site-attached, increasing the potential for repeated interactions between individual cleaners and clients. Here, we contrast the patterns of cheating and punishment in L. dimidiatus with its close relative, the less site-attached Labroides bicolor. Overall, L. bicolor had larger home ranges, cheated more often and, contrary to our prediction, were punished by cheated clients as frequently as, and not less often than, L. dimidiatus. However, adult L. bicolor, which had the largest home ranges, did not cheat more than younger conspecifics, suggesting that roaming, and hence the frequency of repeated interactions, has little influence on cheating and retaliation in cleaner–client relationships. We suggest that roaming cleaners offer the only option available to many site-attached reef fish seeking a cleaning service. This asymmetry in scope for partner choice encourages dishonesty by the partner with more options (i.e. L. bicolor), but to be cleaned by a cleaner that sometimes cheats may be a better option than not to be cleaned at all.  相似文献   

10.
How can cooperation persist if, for one partner, cheating is more profitable than cooperation in each round, while the other partner has no option to cheat? Our laboratory experiments suggest that such a situation exists between the cleaner fish Labroides dimidiatus and its nonpredatory client reef fish species, which actively seek cleaners to have their ectoparasites removed. Clients Ctenochaetus striatus regularly jolted in response to cleaner mouth contact, and these jolts were not linked to the removal of parasites. In addition, cleaners did not search for parasites but fed on mucus when exposed to anaesthetized clients, which could not control the cleaners' behaviour. Field data showed that clients often terminated an interaction immediately after a jolt. Client species with access to only one cleaning station, owing to their small territories or home ranges, terminated interactions mainly by chasing cleaners while clients with access to two or more cleaning stations mainly swam away. Thus, the chasing of cleaners appeared to be a form of punishment, imposing costs on the cleaner at the client's (momentary) expense. Chasing yields future benefits, as jolts were on average less frequent during interactions between cleaners and individuals that had terminated their previous interaction by aggressive chasing.  相似文献   

11.
Cooperative interactions offer the inherent possibility of cheating by each of the interacting partners. A key challenge to behavioural observers is to recognize these conflicts, and find means to measure reliably cheating in natural interactions. Cleanerfish Labroides dimidiatus cheat by taking scales and mucus from their fish clients and such dishonest cleaning has been previously recognized in the form of whole‐body jolts by clients in response to cleaner mouth contact. In this study, we test whether jolts may be a general client response to cheating by cleaners. We experimentally varied the ectoparasite loads of yellowtail damselfish (Microspathodon chrysurus), a common client of the cleaning goby Elacantinus evelynae, and compared the rates of jolts on parasitized and deparasitized clients. As predicted if jolts represent cleaner cheating, deparasitized clients jolted more often than parasitized clients, and overall jolt rates increased over time as client parasite load was presumably reduced by cleaning activity. Yellowtail damselfish in the wild jolted significantly less frequently than those in captivity, which is consistent with a loss of ectoparasites during capture. Our results suggest that jolts by clients of cleaning gobies are not related to the removal of ectoparasites. Client jolts may therefore be a generally accurate measure of cheating by cleanerfish.  相似文献   

12.
Reef fish that actively visit cleaner fish to have parasites and dead or infected tissue removed face two potential problems: they might have to wait while cleaners inspect other clients, and cleaners might feed on healthy body tissue, a behaviour that is referred to as cheating. Individuals of some ‘client’ species have large home ranges, which cover several cleaning stations, while others have small territories or home ranges with access to only one cleaning station. The former can thus choose between cleaners, while the latter cannot. We investigated whether clients with large home ranges change cleaning partners to outplay cleaners against each other to achieve (1) priority of access over clients with no choice at cleaning stations and (2) control over cheating by cleaners. We followed individuals of longnosed parrotfish, Hipposcarus harid, for up to 120 min in their natural environment and noted their interactions with cleaner wrasses, Labroides dimidiatus. Individuals were likely to return to the same cleaning station if the previous interaction had ended without conflict but changed cleaners for the next inspection if they had been either cheated or ignored, at least if the time between two consecutive visits was short. The overall attractiveness of a cleaning station seemed to be largely independent of service quality, which appeared to be similar at all stations. This is the first empirical evidence that the option to change partners is used as a control mechanism to stabilize cooperative behaviour.  相似文献   

13.
The cleaner wrasse Labroides dimidiatus often touches 'client' reef fish dorsal fin areas with its pelvic and pectoral fins. The relative spatial positions of cleaner and client remain constant and the cleaner's head points away from the client's body. Therefore, this behaviour is not compatible with foraging and the removal of client ectoparasites. As clients seek such 'tactile stimulation', it can be classified as an interspecific socio-positive behaviour. Our field observations on 12 cleaners (observation time of 112h) suggest that cleaners use tactile stimulation in order to successfully (i) alter client decisions over how long to stay for an inspection, and (ii) stop clients from fleeing or aggressive chasing of the cleaner in response to a cleaner fish bite that made them jolt. Finally, predatory clients receive tactile stimulation more often than non-predatory clients, which might be interpreted as an extra service that cleaners give to specific partners as pre-conflict management, as these partners would be particularly dangerous if they started a conflict. We therefore propose that cleaner fish use interspecific social strategies, which have so far been reported only from mammals, particularly primates.  相似文献   

14.
Humans may help others even in?situations where the recipient will not reciprocate [1-5]. In some cases, such behavior can be explained by the helpers increasing their image score, which will increase the probability that bystanders will help them in the future [5-7]. For other animals, the notion that many interactions take place in an environment containing an audience of eavesdropping bystanders has also been proposed to have important consequences for social behavior, including levels of cooperation [8]. However, experimental evidence is currently restricted to the demonstration that cleaner fish Labroides dimidiatus can learn to solve a foraging task [9]. The cleaners learned to feed against their preference on artificial clients if that allowed them to access additional artificial clients, which would translate into cooperatively eating ectoparasites rather than cheating by eating client mucus under natural conditions [10]. Here we show that cleaners immediately increase current levels of cooperation in the presence of?bystander client reef fish. Furthermore, we find that bystanders respond to any occurrence of cleaners cheating their current client with avoidance. In conclusion, the results demonstrate, for the first time, that image scoring by an audience indeed leads to increased levels of cooperation in a nonhuman animal.  相似文献   

15.
The cleaner wrasse Labroides dimidiatus occupies fixed ‘cleaning stations’ on coral reefs, which ‘client’ reef fish visit repeatedly to have parasites removed. Conflict arises because cleaners prefer to cheat by feeding on client mucus instead of parasites. Clients can prevent L. dimidiatus from always cheating using control mechanisms such as chasing and partner switching, which depend on repeated interactions. These control mechanisms would be undermined in the absence of frequent repeated interactions, if cleaners roved over large areas. Roving behaviour has been anecdotally described for the closely related cleaner wrasse Labroides bicolor. Here we report field data comparing these two species in Moorea, French Polynesia. Our results confirmed that L. bicolor home ranges are much larger than L. dimidiatus home ranges, and showed that cleaning interactions occurred all over the L. bicolor home range: home range of cleaning interactions increased with total home range size. Moreover, we found that cleaner initiation of interactions increased with home range size in L. bicolor, which would give L. bicolor with large home ranges additional leverage to increase cheating. In line with these results, we found that client jolt rate (used as a measure of cheating) was higher among clients of cleaners with large home ranges. Our results emphasise the importance of game structure and control over initiating interactions as parameters in determining the nature of interactions in mutualisms.  相似文献   

16.
Recent studies on cleaning behaviour suggest that there are conflicts between cleaners and their clients over what cleaners eat. The diet of cleaners usually contains ectoparasites and some client tissue. It is unclear, however, whether cleaners prefer client tissue over ectoparasites or whether they include client tissue in their diet only when searching for parasites alone is not profitable. To distinguish between these two hypotheses, we trained cleaner fish Labroides dimidiatus to feed from plates and offered them client mucus from the parrotfish Chlorurus sordidus, parasitic monogenean flatworms, parasitic gnathiid isopods and boiled flour glue as a control. We found that cleaners ate more mucus and monogeneans than gnathiids, with gnathiids eaten slightly more often than the control substance. Because gnathiids are the most abundant ectoparasites, our results suggest a potential for conflict between cleaners and clients over what the cleaner should eat, and support studies emphasizing the importance of partner control in keeping cleaning interactions mutualistic.  相似文献   

17.
Coral reef ecosystems are declining worldwide and under foreseeable threat due to climate change, resulting in significant changes in reef communities. It is unknown, however, how such community changes impact interspecific interactions. Recent extreme weather events affecting the Great Barrier Reef, that is, consecutive cyclones and the 2016 El Niño event, allowed us to explore potential consequences in the mutualistic interactions involving cleaner fish Labroides dimidiatus (hereafter “cleaner”). After the perturbations, cleaner densities were reduced by 80%, disproportionally compared to the variety of reef fish clients from which cleaners remove ectoparasites. Consequently, shifts in supply and demand yielded an increase in the clients’ demand for cleaning. Therefore, clients became less selective toward cleaners, whereas cleaners were able to choose from a multitude of partners. In parallel, we found a significant decline in the ability of cleaners to manage their reputation and to learn to prioritize ephemeral food sources to maximize food intake in laboratory experiments. In other words, cleaners failed to display the previously documented strategic sophistication that made this species a prime example for fish intelligence. In conclusion, low population densities may cause various effects on individual behavior, and as a consequence, interspecific interactions. At the same time, our data suggest that a recovery of population densities would cause a recovery of previously described interaction patterns and cleaner strategic sophistication within the lifetime of individuals.  相似文献   

18.
Game-theory models have indicated that the evolution of mixed strategies of cheating and honesty in many mutualisms is unlikely. Moreover, the mutualistic nature of interspecific interactions has often been difficult to demonstrate empirically. We present a game-theory analysis that addresses these issues using cleaning symbioses among fishes as a model system. We show that the assumption of constant pay-offs in existing models prevents the evolution of evolutionarily stable mixed strategies of cheating and honesty. However, when interaction pay-offs are assumed to be density dependent, mixed strategies of cheating and honesty become possible. In nature, cheating by clients often takes the form of retaliation by clients against cheating cleaners, and we show that mixed strategies of cheating and honesty evolve within the cleaner population when clients retaliate. The dynamics of strategies include both negative and positive effects of interactions, as well as density-dependent interactions. Consequently, the effects of perturbations to the model are nonlinear. In particular, we show that under certain conditions the removal of cleaners may have little impact on client populations. This indicates that the underlying mutualistic nature of some interspecific interactions may be difficult to demonstrate using simple manipulation experiments.  相似文献   

19.
Cleaning behaviour is a popular example of non-kin cooperation. However, quantitative support for this is generally sparse and the alternative, that cleaners are parasitic, has also been proposed. Although the behaviour involves some of the most complex and highly developed interspecific communication signals known, the proximate causal factors for why clients seek cleaners are controversial. However, this information is essential to understanding the evolution of cleaning. I tested whether clients seek cleaners in response to parasite infection or whether clients seek cleaners for tactile stimulation regardless of parasite load. Parasite loads on client fish were manipulated and clients exposed to cleaner fish and control fish behind glass. I found that parasitized client fish spent more time than unparasitized fish next to a cleaner fish. In addition, parasitized clients spent more time next to cleaners than next to control fish, whereas unparasitized fish were not attracted to cleaners. This study shows, I believe for the first time, which is somewhat surprising, that parasite infection alone causes clients to seek cleaning by cleaners and provides insight into how this behaviour evolved.  相似文献   

20.
Cleaner fish, Labroides dimidiatus, prefer the mucus of the parrotfish, Chlorurus sordidus, to parasitic gnathiid isopods, the main items in their diet, indicating a major conflict between clients and cleaners over what the latter should eat during interactions. We tested whether the conflict varied with client species (and the quality of its mucus) and with the presence of blood in the gnathiids. First, we offered cleaners the choice between mucus of the parrotfish and that of the snapper, Lutjanus fulviflamma. When offered equal amounts of mucus on Plexiglas plates, cleaners readily developed a significant preference for the parrotfish mucus. Reducing the amount of parrotfish mucus by 75% made the preference disappear. In a second test, we offered the cleaners gnathiids that were or were not engorged with client fish blood. Cleaners showed no significant preference for either food item. Our results suggest that the degree of conflict between cleaners and clients may vary between species, depending on whether the latter have a preferred mucus. In contrast, the cleaners' lack of preference for engorged gnathiids benefits clients because it means that cleaners do not hesitate to eat unengorged gnathiids before the gnathiids harm the fish by removing blood or by transmitting blood parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号