首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The fluorescence lifetime of nicotinamide adenine dinucleotide (NADH) is commonly used in conjunction with the phasor approach as a molecular biomarker to provide information on cellular metabolism of autofluorescence imaging of cells and tissue. However, in the phasor approach, the bound and free lifetime defining the phasor metabolic trajectory is a subject of debate. The fluorescence lifetime of NADH increases when bound to an enzyme, in contrast to the short multiexponential lifetime displayed by NADH in solution. The extent of fluorescence lifetime increase depends on the enzyme to which NADH is bound. With proper preparation of lactate dehydrogenase (LDH) using oxalic acid (OA) as an allosteric factor, bound NADH to LDH has a lifetime of 3.4 ns and is positioned on the universal semicircle of the phasor plot, inferring a monoexponential lifetime for this species. Surprisingly, measurements in the cellular environments with different metabolic states show a linear trajectory between free NADH at about 0.37 ns and bound NADH at 3.4 ns. These observations support that in a cellular environment, a 3.4 ns value could be used for bound NADH lifetime. The phasor analysis of many cell types shows a linear combination of fractional contributions of free and bound species NADH.  相似文献   

2.
NADH is a naturally fluorescent metabolite associated with cellular respiration. Exploiting the different fluorescence lifetime of free and bound NADH has the potential to quantify the relative amount of bound and free NADH, enhancing understanding of cellular processes including apoptosis, cancer pathology, and enzyme kinetics. We use the phasor-fluorescence lifetime image microscopy approach to spatially map NADH in both the free and bound forms of live undifferentiated and differentiated myoblast cells. The phasor approach graphically depicts the change in lifetime at a pixel level without the requirement for fitting the decay. Comparison of the spatial distribution of NADH in the nucleus of cells induced to differentiate through serum starvation and undifferentiated cells show differing distributions of bound and free NADH. Undifferentiated cells displayed a short lifetime indicative of free NADH in the nucleus and a longer lifetime attributed to the presence of bound NADH outside of the nucleus. Differentiating cells displayed redistribution of free NADH with decreased relative concentration of free NADH within the nucleus whereas the majority of NADH was found in the cytoplasm.  相似文献   

3.
Aldehyde dehydrogenase 2 (ALDH2) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg(2+) ions influence ALDH2 activity in part by increasing NADH binding affinity. Traditional fluorescence measurements monitor the blue shift of the NADH fluorescence spectrum to study ALDH2-NADH interactions. By using time-resolved fluorescence spectroscopy, we have resolved the fluorescent lifetimes (τ) of free NADH (τ=0.4 ns) and bound NADH (τ=6.0 ns). We used this technique to investigate the effects of Mg(2+) on the ALDH2-NADH binding characteristics and enzyme catalysis. From the resolved free and bound NADH fluorescence signatures, the K(D) for NADH with ALDH2 ranged from 468 μM to 12 μM for Mg(2+) ion concentrations of 20 to 6000 μM, respectively. The rate constant for dissociation of the enzyme-NADH complex ranged from 0.4s(-1) (6000 μM Mg(2+)) to 8.3s(-1) (0 μM Mg(2+)) as determined by addition of excess NAD(+) to prevent re-association of NADH and resolving the real-time NADH fluorescence signal. The apparent NADH association/re-association rate constants were approximately 0.04 μM(-1)s(-1) over the entire Mg(2+) ion concentration range and demonstrate that Mg(2+) ions slow the release of NADH from the enzyme rather than promoting its re-association. We applied NADH fluorescence lifetime analysis to the study of NADH binding during enzyme catalysis. Our fluorescence lifetime analysis confirmed complex behavior of the enzyme activity as a function of Mg(2+) concentration. Importantly, we observed no pre-steady state burst of NADH formation. Furthermore, we observed distinct fluorescence signatures from multiple ALDH2-NADH complexes corresponding to free NADH, enzyme-bound NADH, and, potentially, an abortive NADH-enzyme-propanal complex (τ=11.2 ns).  相似文献   

4.
The time-resolved and steady state fluorescence properties were measured for pig heart cytoplasmic malate dehydrogenase at pH 6.0 and 8.0. The fluorescence decay can be described by two rate processes, according to the functions: I(t) = 0.7e(-t/1.0) + 0.3e(-t/4.4) for the free enzyme and I(t) = 0.7e(-t/0.8) + 0.3e(-t/2.0 for the enzyme . NADH complex. Quenching by NADH of the tryptophan fluorescence is linear. The only effect of pH is to change the association constant for NADH binding; the fluorescence of the free enzyme and the fluorescence quenching by NADH, I-, and acrylamide are unaffected by pH. Thus there are no changes in conformation of the free enzyme or of the NADH complex over the range of pH 6 to 8.  相似文献   

5.
6.
Deoxyhypusine is a modified lysine residue. It is formed posttranslationally in the precursor of eukaryotic initiation factor 5A (eIF5A) by deoxyhypusine synthase, employing spermidine as a butylamine donor. In the initial step of this reaction, deoxyhypusine synthase catalyzes the production of NADH through dehydrogenation of spermidine. Fluorescence measurements of this reaction revealed a -22-nm blue shift in the emission peak of NADH and a approximately 15-fold increase in peak intensity, characteristics of tightly bound NADH that were not seen by simply mixing NADH and enzyme. The fluorescent properties of the bound NADH can be ascribed to a hydrophobic environment and a rigidly held, open conformation of NADH, features in accord with the known crystal structure of the enzyme. Considerable fluorescence resonance energy transfer from tryptophan 327 in the active site to the dihydronicotinamide ring of NADH was seen. Upon addition of the eIF5A precursor, utilization of the enzyme-bound NADH for reduction of the eIF5A-imine intermediate to deoxyhypusine was reflected by a rapid decrease in the NADH fluorescence, indicating a transient hydride transfer mechanism as an integral part of the reaction. The number of NADH molecules bound approached four/enzyme tetramer; not all of the bound NADH was available for reduction of the eIF5A-imine intermediate.  相似文献   

7.
1-Pyrenebutyric acid (PBA) is a fluorescent probe whose fluorescence lifetime depends on local oxygen and free radical concentrations. We propose to use PBA fluorescence lifetime to quantify reactive oxygen species (ROS) in biological samples. Time-resolved microfluorimetry was used to record the fluorescence decay of single living cells loaded with this probe. We measured intracellular PBA fluorescence lifetimes and reduced nicotinamide adenine dinucleotide phosphate intensities under various oxygen concentrations. To confirm the feasibility of the new method, CCRF-CEM cells were treated with drugs that are known to increase or decrease ROS production. After treatment with adriamycin, we observed a decrease of PBA fluorescence lifetime. This corresponded to an increase of ROS concentration (80%). After treatment with cysteamine, we observed a reduction of the ROS concentration by 67%. Moreover, addition of exogenous H(2)O(2) solution resulted in a decrease of PBA fluorescence lifetime due to a raising of the intracellular ROS concentration. These results support our hypothesis linking a part of PBA fluorescence lifetime variations to intracellular fluctuation of ROS.  相似文献   

8.
Nicotinamide adenine dinucleotide (NADH) is an endogenous fluorescent molecule commonly used as a metabolic biomarker. Fluorescence lifetime imaging microscopy (FLIM) is a method in which the fluorescence decay is measured at each pixel of an image. While the fluorescence spectrum of free and protein-bound NADH is very similar, free and protein-bound NADH display very different decay profiles. Therefore, FLIM can provide a way to distinguish free/bound NADH at the level of single bacteria within biological samples. The phasor technique is a graphical method to analyse the entire image and to produce a histogram of pixels with different decay profile. In this study, NADH fluorescence decay profiles within Lactobacillus acidophilus samples treated using different protocols indicated discernible variations. Clear distinctions between fluorescence decay profiles of NADH in samples of artificially heightened metabolic activity in comparison to those of samples lacking an accessible carbon source were obtained.  相似文献   

9.
1. The binding parameters for NADH and NAD+ to rabbit-muscle glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been measured by quenching of the flourescence of the protein and the NADH. 2. The fact that the degree of protein fluorescence quenching by bound NAD+ or NADH, excited at 285 nm and measured at 340 nm ('blue' tryptophans), is not linearly related to the saturation functions of these nucleotides, leads to a slight overestimation of the interaction energy and an underestimation of the concentration of sites, if linearity is assumed. 3. This is also the case for NADH, but not for NAD+, when the protein fluorescence is excited at 305 nm and measured at 390 nm ('red' tryptophans). 4. The binding of NAD+ can be described by a model in which the binding of NAD+, via negative interactions within the dimer, induces weaker binding sites, with the result that the microscopic dissociation constant is 0.08 microM at low saturation and 0.18 microM for the holoenzyme. 5. The binding of NADH can be described on the basis of the same model, the dissociation constant at low saturation being 0.5 microM and of the holoenzyme 1.0 microM. 6. The fluorescence of bound NADH is not sensitive to the conformational changes that cause the decrease in affinity of bound NAD+ or NADH. 7. The binding of NAD+ to the 3-phosphoglyceroyl enzyme can be described by a dissociation constant that is at least two orders of magnitude greater than the dissociation constants of the unacylated enzyme. The affinity of NAD+ to this form of the enzyme is in agreement with the Ki calculated from product inhibition by NAD+ of the reductive dephosphorylation of 1,3-diphosphoglycerate.  相似文献   

10.
The techniques of fluorescence enhancement, fluorescence quenching, fluorescence polarization, and equilibrium dialysis are utilized to study the binding properties of coenzyme to horse liver alcohol dehydrogenase. Polarization of fluorescence and equilibrium dialysis show that NADH binds to alcohol dehydrogenase with a stoichiometry of 6 mol per mol of enzyme, in contrast to the value of 2 determined from fluorescence enhancement measurements. NAD+ also binds with a stoichiometry of six as was determined by equilibrium dialysis. The two NADH sites which bind coenzyme more tightly and which are revealed by fluorescence enhancement measurements are designated the catalytic sites. Binding of coenzyme to the four ancillary sites does not alter the quantum yield of NADH but results in a 20% contribution to quenching of enzyme's tryptophan fluorescence. From the emission anisotropy of bound NADH of 24.0% for the additional sites and 28.1% for the catalytic sites and their relative fluorescence lifetimes at the same wavelengths of excitation and emmision, we conclude that the nicotinamide ring of NADH bound to the additional sites exhibits a freedom of motion independent of the macromolecule, while that bound to the catalytic sites is more rigidly held. Polarization of fluorescence yields negative intrinsic free energies of 9.2 and 7.5 Cal M-1 for NADH interaction with the catalytic and additional sites, respectively. Although these values are 1.3 to 2.0 Cal higher than those determined by fluorescence quenching and equilibrium dialysis, the mean Hill coefficient of 1.76 plus or minus 0.06, the titration span of 2.4 logarithmic units and coupling free energies (in magnitude and sign) are the same for all these techniques. The above difference in the intrinsic free energies are attributed largely to the different modes of interaction of excited and unexcited NADH molecules with alcohol dehydrogenase.  相似文献   

11.
The lifetimes of fluorescent components of matrix NADH in isolated porcine heart mitochondria were investigated using time-resolved fluorescence spectroscopy. Three distinct lifetimes of fluorescence were resolved: 0.4 (63%), 1.8 (30%), and 5.7 (7%) ns (% total NADH). The 0.4 ns lifetime and the emission wavelength of the short component were consistent with free NADH. In addition to their longer lifetimes, the remaining pools also had a blue-shifted emission spectrum consistent with immobilized NADH. On the basis of emission frequency and lifetime data, the immobilized pools contributed >80% of NADH fluorescence. The steady-state kinetics of NADH entering the immobilized pools was measured in intact mitochondria and in isolated mitochondrial membranes. The apparent binding constants (K(D)s) for NADH in intact mitochondria, 2.8 mM (1.9 ns pool) and >3 mM (5.7 ns pool), were on the order of the estimated matrix [NADH] (approximately 3.5 mM). The affinities and fluorescence lifetimes resulted in an essentially linear relationship between matrix [NADH] and NADH fluorescence intensity. Mitochondrial membranes had shorter emission lifetimes in the immobilized poo1s [1 ns (34%) and 4.1 ns (8%)] with much higher apparent K(D)s of 100 microM and 20 microM, respectively. The source of the stronger NADH binding affinity in membranes is unknown but could be related to high order structure or other cofactors that are diluted out in the membrane preparation. In both preparations, the rate of NADH oxidation was proportional to the amount of NADH in the long lifetime pools, suggesting that a significant fraction of the bound NADH might be associated with oxidative phosphorylation, potentially in complex 1.  相似文献   

12.
Metabolic adaptations to environmental changes were studied in Caenorhabditis elegans. To assess adjustments in enzyme function, maximum activities of key enzymes of main metabolic pathways were determined. After a 12 h incubation at varying temperatures (10, 20°C) and oxygen supplies (normoxia or anoxia), the activities of the following enzymes were determined at two measuring temperatures in tissue extracts: lactate dehydrogenase (LDH; anaerobic glycolysis), 3-hydroxyacyl-CoA-dehydrogenase (HCDH; fatty acid oxidation), isocitrate dehydrogenases (NAD-IDH, NADP-IDH; tricarboxylic acid cycle) and isocitrate lyase (ICL; glyoxylate cycle). Incubation at 20°C induced a strong increase in maximum LDH activity. Anoxic incubation caused maximum HCDH and NADP-IDH activities and, at 10°C incubation, LDH activity to increase. Maximum NAD-IDH and ICL activities were not influenced by any type of incubation. In order to study the time course of metabolic adaptations to varying oxygen supplies, relative quantities of free and protein-bound NADH were determined in living C. elegans using time-resolved fluorescence spectroscopy. During several hours of anoxia, free and protein-bound NADH showed different time courses. One main result was that just at the moment when the protein-bound NADH had reached a constant level, and the free NADH started to increase rapidly, the worms fell into a rigor state. The data on enzyme activity and NADH fluorescence can be interpreted on the basis of a two-stage model of anaerobiosis.  相似文献   

13.
The reduced coenzyme NADH plays a central role in mitochondrial respiratory metabolism. However, reports on the amount of free NADH in mitochondria are sparse and contradictory. We first determined the emission spectrum of NADH bound to proteins using isothermal titration calorimetry combined with fluorescence spectroscopy. The NADH content of actively respiring mitochondria (from potato tubers [Solanum tuberosum cv Bintje]) in different metabolic states was then measured by spectral decomposition analysis of fluorescence emission spectra. Most of the mitochondrial NADH is bound to proteins, and the amount is low in state 3 (substrate + ADP present) and high in state 2 (only substrate present) and state 4 (substrate + ATP). By contrast, the amount of free NADH is low but relatively constant, even increasing a little in state 3. Using modeling, we show that these results can be explained by a 2.5- to 3-fold weaker average binding of NADH to mitochondrial protein in state 3 compared with state 4. This indicates that there is a specific mechanism for free NADH homeostasis and that the concentration of free NADH in the mitochondrial matrix per se does not play a regulatory role in mitochondrial metabolism. These findings have far-reaching consequences for the interpretation of cellular metabolism.  相似文献   

14.
R. P. McIntosh  P. Johnson 《Biopolymers》1978,17(10):2373-2384
Measurements of fluorescence depolarization on fumarase labeled with the dye pyrene-butyryl were used to test for previously reported structural changes in this enzymes. These apparent conformation changes were of interest because they seemed to correlate with variation in catalytic activity provoked by changing temperature or pH, or by the presence of a competitive inhibitor. In the present studies, the bound dye pyrene-butyryl and the enzymes were investigated systematically to ensure that simple interpretation of fluorescence depolarization results would be meaningful. This analysis showed that carefully controlled experimental condition were necessary to eliminate a dye component with a short fluorescence lifetime and that it was essential to allow for small variations of lifetime with temperature. Contrary to the previous report, a constant rotational relaxation time of the magnitude expected for a nearly spherical molecule of fumarase was found. No changes were detectable by fluorescence depolarization in the size or shape of pyrene-butyryl–fumarase under the solution conditions tested that caused variation in enzyme activity.  相似文献   

15.
The relationship of NADH/NAD to O2 consumption with respect to the different phases of contraction in vascular smooth muscle in response to a maximal depolarizing concentration of KCl was investigated. The NADH bound to cellular proteins could be distinguished from free NADH in whole tissue homogenates. Evidence suggested that the NADH was bound to pyruvate dehydrogenase and perhaps to other dehydrogenases since binding paralleled the changes in the activity of pyruvate dehydrogenase with contraction. The measured changes in NADH were attributed to that within the mitochondrial compartment since the contribution of reducing equivalents within the cytoplasmic compartment was negligible. During the phase of contraction in which force was initially being generated and at which O2 consumption was the highest, there was a net increase in NADH/NAD. After stable isometric force was maintained, at which time O2 consumption had returned to slightly above the basal pre-contraction level, there was a net decrease in NADH/NAD. Previous evidence indicates the phosphorylation potential (ATP/ADP) may decrease during this phase of contraction. It is concluded that contraction of vascular smooth muscle is accompanied by a changing pool of reducing equivalents. Factors which govern O2 consumption may change during the different phases of muscle contraction.  相似文献   

16.
The phosphorescence properties of liver alcohol dehydrogenase from horse were characterized at limiting concentrations of coenzyme and coenzyme analogues. The emission decay kinetics of Trp-314 in strong, slowly exchanging, ternary complexes with NADH/isobutyramide, NAD/pyrazole, and NADH/dimethyl sulfoxide displays a markedly nonexponential character. The analysis of decay components over the saturation curve reveals that the phosphorescence from singly bound protein molecules has a lifetime from 1 to 1.3 s, which is 2-3 times larger than observed with fully bound and unliganded enzyme. The remarkably tighter configuration reported by the triplet probe for the coenzyme-binding domain in half-saturated macromolecules is not exclusive of strongly inhibited ternary complexes. Measurements on binary complexes with NADH, ADPR, and the inactive coenzyme analogue 1,4,5,6-tetrahydronicotinamide adenine dinucleotide confirm that binding of the ligand to one subunit has qualitatively the same influence on protein structure. If the lifetime of Trp-314 provides clear evidence for an appreciable change in conformation at half-binding that is apparently triggered by the ADPR fragment of the coenzyme, such communication between subunits does not lead to allosteric phenomena in coenzyme binding.  相似文献   

17.
The fluorescence yield and lifetime of ethidium bromide complexes with 1,4-alpha-glucan branching enzyme and its free nucleic acid component 2.5S RNA were measured. Both fluorescence parameters showed a 10-fold increase in comparison with those characteristics for the free dye. This increase allows to suggest the existence of double-stranded regions in 2.5S RNA both in the free as well as in the protein bound state. The coefficients of fluorescence polarization were also determined for ethidium bromide complexed with free and protein bound 2.5S RNA. They proved to be 13 and 18% respectively. No concentration depolarization was observed in both types of ethidium bromide and ethidium bromide--enzyme--RNA complexes. This proves that the double-stranded regions are rather short and that two ethidium bromide molecules can't be bound to each of them. The binding isotherms were measured for ethidium bromide absorbed on 2.5S RNA and on the holoenzyme. Their parameters napp and rmax are identical in the cases of free and protein bound 2,5S RNA (rmax = 0.046 +/- 0.001). However the binding constants of ethidium bromide complexes with free and protein bound 2.5S RNA differ significantly (Kapp = 2.2 X 10(6) M-1 for free 2.5S RNA and Kapp = 1.6 X 10(6) M-1 for the holoenzyme). The quantity of nucleotides involved in the two double-stranded regions accessible for ethidium binding is estimated to be about 28%. Increasing of Mg2+ ion concentration up to 10(-3) results in a decrease of ethidium bromide binding with double stranded regions. It may be due to a more compact tertiary structure of 2.5S RNA in the presence of Mg2+ in the free as well as in protein bound state.  相似文献   

18.
Two possible consequences of crystal lattice formation were studied with glyceraldehyde-3-phosphate dehydrogenases isolated from lobster (Palinurus vulgaris) and pig muscle: changes in the microenvironment of the NADH-binding site as detected by fluorescence polarization, and differences in the maximal activities of the microcrystalline enzymes as compared to those in solution. In solution practically no difference was found between the polarization values of the enzyme-NADH and the catalytic intermediate 3-phosphoglyceroyl-enzyme-NADH complexes whether with lobster or with pig enzyme. In microcrystalline state a similar effect was found with the lobster enzyme. However, fluorescence polarization of NADH bound to the pig enzyme was significantly different in the presence and in the absence of the 3-phosphoglyceroyl group. This indicates some change in the microenvironment of the pig enzyme-bound NADH which occurs upon decomposition of the catalytic intermediate. The difference between the microcrystalline lobster and pig muscle glyceraldehyde-3-phosphate dehydrogenases pertains also to their functional properties. Packing of soluble pig muscle enzyme into a crystal lattice stabilizes a unique protein conformation of extremely low activity (about 3% of that measured in solution). The maximal molar activity of the lobster enzyme is identical in crystalline state and in solution, which is an exceptional phenomenon.  相似文献   

19.
Das TK  Mazumdar S 《Biopolymers》2000,57(5):316-322
Picosecond time-resolved fluorescence studies are carried out on cyanide-inhibited and heat-modified cytochrome c oxidase in aqueous lauryl maltoside surfactant solution, as well as in an aqueous vesicle, to understand the conformational changes associated with electron transfer and proton pumping activity of the enzyme. The tryptophan fluorescence decay profiles follow a four exponential model, which also matches the lifetime maxima obtained in a maximum entropy method analysis. The fast lifetime components are highly affected by the reduction and chemical modification of the enzyme. Changes in these lifetime components are related to the conformational changes in the vicinity of the heme centers of the enzyme. The cyanide-inhibited enzyme in the oxidized form shows a fluorescence decay profile similar to that of the native oxidized form, indicating that the conformational changes due to cyanide binding are very small. However, reduction of the cyanide-inhibited enzyme that leaves cyanide bound heme alpha3 oxidized causes a large increase in the fluorescence lifetimes, which indicates very significant conformational changes due to electron transfer to the dinuclear Cu(A) and heme alpha centers. A comparison of the tryptophan fluorescence decay of various other modified forms of the enzyme leads us to propose that the possible site of conformational coupling is located near heme alpha instead of the binuclear heme alpha3-Cu(B) center.  相似文献   

20.
We investigated the use of fluorescence lifetime imaging microscopy (FLIM) of a fluorescently labeled ATP analog (3'-O-{N-[3-(7-diethylaminocoumarin-3-carboxamido)propyl]carbamoyl}ATP) to probe in permeabilized muscle fibers the changes in the environment of the nucleotide binding pocket caused by interaction with actin. Spatial averaging of FLIM data of muscle sarcomeres reduces photon noise, permitting detailed analysis of the fluorescence decay profiles. FLIM reveals that the lifetime of the nucleotide, in its ADP form because of the low concentration of nucleotide present, changes depending on whether the nucleotide is free in solution or bound to myosin, and on whether the myosin is bound to actin in an actomyosin complex. Characterization of the fluorescence decays by a multiexponential function allowed us to resolve the lifetimes and amplitudes of each of these populations, namely, the fluorophore bound to myosin, bound to actin, in an actomyosin complex, and free in the filament lattice. This novel application of FLIM to muscle fibers shows that with spatial averaging, detailed information about the nature of nucleotide complexes can be derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号