首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational "strain" in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

2.
研究了鼠肝线粒体内膜体呼吸链复合体Ⅱ+Ⅲ的H~+/2e比与Δψ的相关性及其调节因素。证明:(1)用光谱法测得复合体Ⅱ+Ⅲ的电子传递与质子转移初速度的H~+/2e比值接近4,与铁氰化钾脉冲法测得的结果相同。H~+/2e随着ΔμH~+升高而逐渐下降。荧光透析法测定不同Fe~(3+)还原速率建立的不同Δψ时,证明H~+回漏对Δψ和H~+泵出速度的依赖性。讨论了呼吸链复合体Ⅱ+Ⅲ电子传递与质子转移之间的偶联以及“Redoxslip”和“protonleak”的现象。(2)抑制剂实验说明线粒体内膜中Ca~(2+)、Pi与H~+的协同运输系统对线粒体内膜H~+泵出及H~+回漏作用有一定的调控作用。  相似文献   

3.
Since mitochondrial cytochrome c oxidase was found to be a redox-linked proton pump, most enzymes of the haem-copper oxidase family have been shown to share this function. Here, the most recent knowledge of how the individual reactions of the enzyme's catalytic cycle are coupled to proton translocation is reviewed. Two protons each are pumped during the oxidative and reductive halves of the cycle, respectively. An apparent controversy that concerns proton translocation during the reductive half is resolved. If the oxidised enzyme is allowed to relax in the absence of reductant, the binuclear haem-copper centre attains a state that lies outside the main catalytic cycle. Reduction of this form of the enzyme is not linked to proton translocation, but is necessary for a return to the main cycle. This phenomenon might be related to the previously described "pulsed" vs. "resting" and "fast" vs."slow" forms of haem-copper oxidases.  相似文献   

4.
Membrane-bound complex I (NADH:ubiquinone oxidoreductase) of the respiratory chain is considered the main site of mitochondrial radical formation and plays a major role in many mitochondrial pathologies. Structural information is scarce for complex I, and its molecular mechanism is not known. Recently, the 49-kDa subunit has been identified as part of the "catalytic core" conferring ubiquinone reduction by complex I. We found that the position of the 49-kDa subunit is clearly separated from the membrane part of complex I, suggesting an indirect mechanism of proton translocation. This contradicts all hypothetical mechanisms discussed in the field that link proton translocation directly to redox events and suggests an indirect mechanism of proton pumping by redox-driven conformational energy transfer.  相似文献   

5.
In order to elucidate the nature of endogenous proton conductance of rat liver inner mitochondrial membrane, the dependence of the rate of Ca2+ transport on pH was studied. It was found that the inhibiting effect of H+ is independent of protonation of functional groups of hypothetical Ca2+ carrier, but results from electrogenic transfer of H+ across the membrane, which is highly permeable for the proton. The adsorption of H+ by mitochondria is inhibited by ruthenium red and other specific inhibitors of Ca2+ transport. It is concluded that endogenous proton conductance of the inner mitochondrial membrane depends on the functioning of the same transport system essential for membrane permeability for Ca2+ and other bivalent cations. The correlation observed between the rates of H+ and Ca2+ transport in mitochondria and the ratio of cation mobilities in aqueous solutions is in favour of a "porous" mechanism of cation transport across the mitochondrial membrane.  相似文献   

6.
Two mechanisms may affect the yield of the oxidative phosphorylation pathway in isolated mitochondria: (i) a decrease in the intrinsic coupling of the proton pumps (H+/2e- or H+/ATP), and (ii) an increase in the inner membrane conductance (proton or cation leak). Hence three kinds of modifications can occur and each of them have been characterized in isolated rat liver mitochondria (see preceding chapter by Rigoulet et al.). In intact isolated hepatocytes, these modifications are linked to specific patterns of bioenergetic parameters, i.e. respiratory flux, mitochondrial redox potential, DY, and phosphate potential.(1) The increase in H+/ATP stoichiometry of the mitochondrial ATP synthase, as induced by almitrine [20], leads to a decrease in mitochondrial and cytosolic ATP/ADP ratios without any change in the protonmotive force nor in the respiratory rate or redox potential. (2) In comparison to carbohydrate, octanoate metabolism by -oxidation increases the proportion of electrons supplied at the second coupling site of the respiratory chain. This mimics a redox slipping. Octanoate addition results in an increased respiratory rate and mitochondrial NADH/NAD ratio while protonmotive force and phosphate potential are almost unaffected. The respiratory rate increase is associated with a decrease in the overall apparent thermodynamic driving force (2'o - np) which confirms the redox-slipping-like effect. (3) An increase in proton conductance as induced by the protonophoric uncoupler 2,4-dinitrophenol (DNP) leads to a decrease, as expected, in the mitochondrial NADH/NAD and ATP/ADP ratios and in while respiratory rate is increased.Thus, each kind of modification (proton leak, respiratory chain redox slipping or increase in H+/ATP stoichiometry of ATPase) is related to a specific set of bioenergetic parameters in intact cells. Moreover, these patterns are in good agreement with the data found in isolated mitochondria.From this work, we conclude that quantitative analysis of four bioenergetic parameters (respiration rate, mitochondrial NADH/NAD ratio, protonmotive force and mitochondrial phosphate potential) gives adequate tools to investigate the mechanism by which some alterations may affect the yield of the oxidative phosphorylation pathway in intact cells.  相似文献   

7.
Titration of mitochondrial respiration against the membrane potential with the inhibitor malonate has been carried out during the perinatal period in isolated rat liver mitochondria. Neonatal and adult mitochondria exhibited the characteristic "nonohmic" behavior for the proton conductance (CmH+). In contrast, fetal mitochondria exhibited an "anomalous" "ohmic" behavior for CmH+. The calculated passive proton permeability of the membrane undergoes a profound reduction during the first postnatal hour. The results reported demonstrate that the hypothesis [Pollak, J.K. & Sutton, R. (1980) Trends Biochem. Sci. 5, 23-27] of the existence of a "leaky" mitochondria in the fetal rat liver, and of its sudden neonatal change towards a state of higher energy conservation of the proton electrochemical gradient, is correct.  相似文献   

8.
Reductions in cellular oxygen consumption (Vo2) and reactive oxygen species (ROS) production have been proposed as mechanisms underlying the anti-aging effects of calorie restriction (CR). Mitochondria are a cell's greatest "sink" for oxygen and also its primary source of ROS. The mitochondrial proton leak pathway is responsible for 20-30% of Vo2 in resting cells. We hypothesized that CR leads to decreased proton leak with consequential decreases in Vo2, ROS production, and cellular damage. Here, we report the effects of short-term (2-wk, 2-mo) and medium-term (6-mo) CR (40%) on rat muscle mitochondrial proton leak, ROS production, and whole animal Vo2. Whole body Vo2 decreased with CR at all time points, whereas mass-adjusted Vo2 was normal until the 6-mo time point, when it was 40% lower in CR compared with control rats. At all time points, maximal leak-dependent Vo2 was lower in CR rats compared with controls. Proton leak kinetics indicated that mechanisms of adaptation to CR were different between short- and medium-term treatments, with the former leading to decreases in protonmotive force (Deltap) and state 4 Vo2 and the latter to increases in Deltap and decreases in state 4 Vo2. Results from metabolic control analyses of oxidative phosphorylation are consistent with the idea that short- and medium-term responses are distinct. Mitochondrial H2O2 production was lower in all three CR groups compared with controls. Overall, this study details the rapid effects of short- and medium-term CR on proton leak, ROS production, and metabolic control of oxidative phosphorylation. Results indicate that a reduction in mitochondrial Vo2 and ROS production may be a mechanism for the actions of CR.  相似文献   

9.
Mutations affecting mitochondrial complex I, a multi-subunit assembly that couples electron transfer to proton pumping, are the most frequent cause of heritable mitochondrial diseases. However, the mechanisms by which complex I dysfunction results in disease remain unclear. Here, we describe a Drosophila model of complex I deficiency caused by a homoplasmic mutation in the mitochondrial-DNA-encoded NADH dehydrogenase subunit 2 (ND2) gene. We show that ND2 mutants exhibit phenotypes that resemble symptoms of mitochondrial disease, including shortened lifespan, progressive neurodegeneration, diminished neural mitochondrial membrane potential and lower levels of neural ATP. Our biochemical studies of ND2 mutants reveal that complex I is unable to efficiently couple electron transfer to proton pumping. Thus, our study provides evidence that the ND2 subunit participates directly in the proton pumping mechanism of complex I. Together, our findings support the model that diminished respiratory chain activity, and consequent energy deficiency, are responsible for the pathogenesis of complex-I-associated neurodegeneration.KEY WORDS: Mitochondria, Drosophila, Mitochondrial disease, Respiratory chain, Leigh syndrome, Neurodegeneration  相似文献   

10.
Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.  相似文献   

11.
We investigated the mechanism by which 3,5-diiodo-l-thyronine (T2) affects skeletal muscle mitochondrial bioenergetic parameters following its acute administration to hypothyroid rats. One hour after injection, T2 increased both coupled and uncoupled respiration rates by +27% and +42%, respectively. Top-down elasticity analysis revealed that these effects were the result of increases in the substrate oxidation and mitochondrial uncoupling. Discriminating between proton-leak and redox-slip processes, we identified an increased mitochondrial proton conductance as the "pathway" underlying the effect of T2 on mitochondrial uncoupling. As a whole, these results may provide a mechanism by which T2 rapidly affects energy metabolism in hypothyroid rats.  相似文献   

12.
Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.  相似文献   

13.
From Pasteur to Mitchell: a hundred years of bioenergetics   总被引:1,自引:0,他引:1  
The discovery in 1861 by Louis Pasteur that more yeast is formed aerobically than anaerobically per gram of glucose was the first clue to the difference in efficiency of glycolysis and oxidative phosphorylation. During the first half of the 20th century the pathway of glycolysis was untraveled. Individual enzymes and cofactors were isolated and characterized. A reconstituted system of all enzymes and cofactors catalyzed steady-state glycolysis, provided an appropriate ATPase was added. The need for an ATPase, clearly demonstrated in 1945 by Otto Meyerhof, remains an important aspect of glycolysis that has been sorely neglected by textbooks. The coupling of oxidation and phosphorylation and the formation of the high-energy intermediate 1,3-diphosphoglycerate, discovered by Otto Warburg, are the key reactions of glycolysis. A high-energy intermediate formed during this process was identified as a thiolester. Early concepts of the mechanism of oxidative phosphorylation based on this model led to some frustrating and confusing years of search for high-energy intermediates. Important contributions from the laboratories of Boyer, Cohn, Chance, Green, Lardy, and Lehninger elucidated the properties of the mitochondrial process. Then Peter Mitchell proposed in 1961, 100 years after the publication by Pasteur, that the "high-energy intermediate" is an electrochemical proton gradient generated by the electron transport chain and utilized by a proton turbine (the mitochondrial ATPase complex) to generate ATP. This concept is now widely accepted. Several problems remain to be solved. How are the protons translocated during electron transport? How many protons per site? What is the mechanism of ATP generation during proton flux via the mitochondrial ATPase?  相似文献   

14.
Sandra Amaral 《FEBS letters》2008,582(30):4191-4196
To address the possibility that mitochondria are involved in the age-related loss of testicular function, we characterized mitochondrial bioenergetics in rat testis. A peak of mitochondrial functionality was detected in adult animals, with a decrease in both young and older animals. In the latter group a decrease in mitochondrial function was matched with an increase in proton leak and expression and activity of uncoupling protein 2 (UCP2), suggesting that proton leak may be involved in managing age-dependent mitochondrial dysfunction.  相似文献   

15.
Respiration-driven Mg2+ efflux from rat heart mitochondria has been studied in different conditions. Almost total release of Mg2+ from the mitochondria occurs upon addition of a proton/bivalent cation exchanger, A23187. The content of Mg2+ remaining in mitochondria after A23187 treatment is the same if part of the mitochondrial Mg2+ has already been extruded through the energy-linked mechanism. Some inhibition of Mg2+ efflux is observed in the presence of high concentrations of La3+ (100 µM). A proton/monovalent cation exchanger, nigericin, completely prevents Mg2+ efflux, whereas a cation conductor, valinomycin, considerably stimulates it. The results indicate that the main part of mitochondrial Mg2+ is present in a membrane-bounded compartment, probably in the matrix space. The driving force of the Mg2+ efflux appears to be the proton gradient (pH) created by mitochondrial respiration.  相似文献   

16.
17.
Cytochrome c oxidase catalyzes the reduction of oxygen to water. This process is accompanied by the vectorial transport of protons across the mitochondrial or bacterial membrane ("proton pumping"). The mechanism of proton pumping is still a matter of debate. Many proposed mechanisms require structural changes during the reaction cycle of cytochrome c oxidase. Therefore, the structure of the cytochrome c oxidase was determined in the completely oxidized and in the completely reduced states at a temperature of 100 K. No ligand exchanges or other major structural changes upon reduction of the cytochrome c oxidase from Paracoccus denitrificans were observed. The three histidine Cu(B) ligands are well defined in the oxidized and in the reduced states. These results are hardly compatible with the "histidine cycle" mechanisms formulated previously.  相似文献   

18.
19.
We have studied changes in hepatic mitochondrial efficiency induced by 24-h fasting or acclimation at 29 degrees C, two conditions of reduced thermogenesis. Basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, are not affected after 24-h fasting, when serum free triiodothyronine decreases significantly and serum free fatty acids increase significantly. In rats at 29 degrees C, in which serum free triiodothyronine and fatty acids decrease significantly, basal proton leak increases significantly, while no variation is found in palmitate-induced proton leak. The present results indicate that mitochondrial efficiency in the liver is not related to a physiological decrease in whole body thermogenesis.  相似文献   

20.
In order to further investigate the mechanisms regulating the control of mitochondrial respiration by thyroid hormone, the proton motive force was measured during State IV respiration in liver mitochondria isolated from euthyroid, hyperthyroid, hypothyroid and T3-treated hypothyroid rats. The proton motive force was significantly higher in the hyperthyroid group due to an increased pH. The proton motive force of hypothyroid mitochondria was lower than controls due to a decreased membrane potential. The proton motive force for the T3-treated hypothyroid group did not differ from the euthyroid group due to negating changes in the pH gradient and the membrane potential. The intramitochondrial volume was decreased in the hyperthyroid group and unchanged in the other groups. The results indicate that the thyroid status alters the proton motive force in State IV through individual changes in the pH and membrane potential components of the force. The component that changes in hyperthyroid mitochondria is different from that changing in hypothyroid mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号