首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The Menkes protein (ATP7A; MNK) is a ubiquitous human copper-translocating P-type ATPase and it has a key role in regulating copper homeostasis. Previously we characterised fundamental steps in the catalytic cycle of the Menkes protein. In this study we analysed the role of several conserved regions of the Menkes protein, particularly within the putative cytosolic ATP-binding domain. The results of catalytic studies have indicated an important role of 1086His in catalysis. Our findings provide a biochemical explanation for the most common Wilson disease-causing mutation (H1069Q in the homologous Wilson copper-translocating P-type ATPase). Furthermore, we have identified a unique role of 1230Asp, within the DxxK motif, in coupling ATP binding and acylphosphorylation with copper translocation. Finally, we found that the Menkes protein mutants with significantly reduced catalytic activity can still undergo copper-regulated exocytosis, suggesting that only the complete loss of catalytic activity prevents copper-regulated trafficking of the Menkes protein.  相似文献   

2.
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.  相似文献   

3.
In plants, Rab proteins represent the largest family of monomeric GTP-binding proteins (mG-proteins). As distinct from animal cells comprising 40 subfamilies of Rab proteins, which are the key regulators of intracellular vesicular transport, numerous Rab proteins in Arabidopsis and other plant species could be grouped in only eight subfamilies on the basis of their functional properties. The available data concerning the involvement of these mG-proteins in the control of vesicle trafficking agree generally with the paradigms accepted for other eukaryotes. On the other hand, these proteins play an important role in plant responses to abiotic and biotic factors, indicating specific for plants functions of Rab proteins.  相似文献   

4.
We have shown previously that Rab6, a small, trans-Golgi-localized GTPase, acts upstream of the conserved oligomeric Golgi complex (COG) and ZW10/RINT1 retrograde tether complexes to maintain Golgi homeostasis. In this article, we present evidence from the unbiased and high-resolution approach of electron microscopy and electron tomography that Rab6 is essential to the trans-Golgi trafficking of two morphological classes of coated vesicles; the larger corresponds to clathrin-coated vesicles and the smaller to coat protein I (COPI)-coated vesicles. On the basis of the site of coated vesicle accumulation, cisternal dilation and the normal kinetics of cargo transport from the endoplasmic reticulum (ER) to Golgi followed by delayed Golgi to cell surface transport, we suggest that Golgi function in cargo transport is preferentially inhibited at the trans-Golgi/trans-Golgi network (TGN). The >50% increase in Golgi cisternae number in Rab6-depleted HeLa cells that we observed may well be coupled to the trans-Golgi accumulation of COPI-coated vesicles; depletion of the individual Rab6 effector, myosin IIA, produced an accumulation of uncoated vesicles with if anything a decrease in cisternal number. These results are the first evidence for a Rab6-dependent protein machine affecting Golgi-proximal, coated vesicle accumulation and probably transport at the trans-Golgi and the first example of concomitant cisternal proliferation and increased Golgi stack organization under inhibited transport conditions.  相似文献   

5.
Thimerosal, also known as thimersal, Merthrolate, or sodiumethyl-mercurithiosalicylate, is an organic mercurial compound that is used in a variety of commercial as well as biomedical applications. As a preservative, it is used in a number of vaccines and pharmaceutical products. Its active ingredient is ethylmercury. Both inorganic and organic mercurials are known to interfere with glutamate homeostasis. Brain glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/ aspartats transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of thimerosal on glutamate homeostasis have yet to be determined. As a first step in this process, we examined the effects of thimerosal on the transport of [3H]-D-aspartate, a nonmetabolizable glutamate analog, in Chinese hamster ovary (CHO) cells transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2). Additionally, studies were undertaken to determine the effects of thimerosal on mRNA and protein levels of these transporters. The results indicate that thimerosal treatment caused significant but selective changes in both glutamate transporter mRNA and protein expression in CHO cells. Thimerosal-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was more pronounced in the GLT-1-transfected cells compared with the GLAST-transfected cells. These studies suggest that thimerosal accumulation in the central nervous system might contribute to dysregulation of glutamate homeostasis.  相似文献   

6.
A complex vesicle trafficking system manages the precise and regulated distribution of proteins, membranes and other molecular cargo between cellular compartments as well as the secretion of (heterologous) proteins in mammalian cells. Sec1/Munc18 (SM) proteins are key components of the system by regulating membrane fusion. However, it is not clear how SM proteins contribute to the overall exocytosis. Here, functional analysis of the SM protein Sly1 and Munc18c suggested a united, positive impact upon SNARE-based fusion of ER-to-Golgi- and Golgi-to-plasma membrane-addressed exocytic vesicles and increased the secretory capacity of different therapeutic proteins in Chinese hamster ovary cells up to 40 pg/cell/day. Sly1- and Munc18c-based vesicle traffic engineering cooperated with Xbp-1-mediated ER/Golgi organelle engineering. Our study supports a model for united function of SM proteins in stimulating vesicle trafficking machinery and provides a generic secretion engineering strategy to improve biopharmaceutical manufacturing of important protein therapeutics.  相似文献   

7.
Abstract: The system L transporter is generally considered to be one of the major Na+-independent carriers for large neutral α-amino acids in mammalian cells. However, we found that cultured astrocytes from rat brain cortex accumulate gabapentin, a γ-amino acid, predominantly by this α-amino acid transport system. Uptake of gabapentin by system L transporter was also examined in synaptosomes and Chinese hamster ovary (CHO) cells. The inhibition pattern displayed by various amino acids on gabapentin uptake in astrocytes and synaptosomes corresponds closely to that observed for the system L transport activity in CHO cells. Gabapentin and leucine have K m values that equal their K i values for inhibition of each other, suggesting that leucine and gabapentin compete for the same system L transporter. By contrast, gabapentin exhibited no effect on uptake of GABA, glutamate, and arginine, indicating that these latter three types of brain transporters do not serve for uptake of gabapentin. A comparison of computer modeling analysis of gabapentin and l -leucine structures shows that although the former is a γ-amino acid, it can assume a conformation that can resemble the L-form of a large neutral α-amino acid such as l -leucine. The steady-state kinetic study in astrocytes and CHO cells indicates that the intracellular concentrations of gabapentin are about two to four times higher than that of leucine. The uptake levels of these two substrates are inversely related to their relative exodus rates. The concentrating ability by system L observed in astrocytes is consistent with the substantially high accumulation gradient of gabapentin in the brain tissue as determined by microdialysis.  相似文献   

8.
The copper-transporting ATPase ATP7A has an essential role in human physiology. ATP7A transfers the copper cofactor to metalloenzymes within the secretory pathway; inactivation of ATP7A results in an untreatable neurodegenerative disorder, Menkes disease. Presently, the mechanism of ATP7A-mediated copper release into the secretory pathway is not understood. We demonstrate that the characteristic His/Met-rich segment Met(672)-Pro(707) (HM-loop) that connects the first two transmembrane segments of ATP7A is important for copper release. Mutations within this loop do not prevent the ability of ATP7A to form a phosphorylated intermediate during ATP hydrolysis but inhibit subsequent dephosphorylation, a step associated with copper release. The HM-loop inserted into a scaffold protein forms two structurally distinct binding sites and coordinates copper in a mixed His-Met environment with an ~2:1 stoichiometry. Binding of either copper or silver, a Cu(I) analog, induces structural changes in the loop. Mutations of 4 Met residues to Ile or two His-His pairs to Ala-Gly decrease affinity for copper. Altogether, the data suggest a two-step process, where copper released from the transport sites binds to the first His(Met)(2) site, triggering a structural change and binding to a second 2-coordinate His-His or His-Met site. We also show that copper binding within the HM-loop stabilizes Cu(I) and protects it from oxidation, which may further aid the transfer of copper from ATP7A to acceptor proteins. The mechanism of copper entry into the secretory pathway is discussed.  相似文献   

9.
10.
11.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions.  相似文献   

13.
Prosaposin (SGP-1) and GM2 activator protein (GM2AP) are soluble sphingolipid activator proteins (SAPs) that are targeted to the lysosomal compartment of Sertoli cells to aid hydrolases in the breakdown of glycosphingolipids. To reach the lysosome, most soluble proteins must interact with the mannose 6-phosphate receptor (MPR). To be sorted from the Golgi, the MPR must bind to the Golgi associated, gamma-adaptin homologous, ARF binding proteins (GGAs), a group of monomeric adaptor proteins responsible for the recruitment of clathrin. It is well established, however, that the lysosomes of I-cell disease (ICD) patients have near normal levels of several lysosomal proteins, including prosaposin and GM2AP. ICD results from a mutation in the phosphotransferase that adds mannose 6-phosphate to hydrolases. Thus, prosaposin and GM2AP can traffic to lysosomes in a MPR independent manner. Previous work has demonstrated that an interaction with sphingomyelin in the Golgi membrane is necessary for the targeting of prosaposin by an unknown receptor. Using a TM4 Sertoli cell line, we tested the hypothesis that prosaposin and GM2AP are targeted to the lysosomal compartment via the sortilin receptor, which has been recently shown to have a GGA binding motif. Interestingly, dominant-negative GGAs, unable to bind clathrin to shuttle from the Golgi, prevented the trafficking of prosaposin and GM2AP to lysosomes. A dominant negative construct of sortilin lacking the GGA binding domain retained prosaposin and GM2AP in the Golgi. In conclusion, our results showed that the trafficking of prosaposin and GM2AP to the lysosome is dependent on sortilin.  相似文献   

14.
Natural flavonoids are associated with anti-proliferation of cancer growth. However, the antioxidant and anti-proliferation effects of AE (aloe-emodin) have not been well studied. We have investigated how AE affects the proliferation of hepatic hepatocellular carcinoma cells and exerts an anti-cancer effect. The cytotoxic effect of AE was demonstrated using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and Huh-7 cells were inhibited by AE treatment in both dose- and time-dependent manners. The IC(50) level of AE was ~75 μM. AE also has anti-proliferative effects via induction of DNA damage and apoptosis. 2-DE (two-dimensional electrophoresis) revealed that several proteins were related to the anti-cancer effects of AE. CAPN2 (calpain-2) and UBE3A (ubiquitin-protein ligase E3A), which are associated with the apoptosis signalling pathway, were verified by Western blotting. AE exhibited potent anti-proliferative effects on Huh-7 cells via down-regulation of CAPN2 and UBE3A. The findings support the possibility of AE being a chemopreventative agent.  相似文献   

15.
The kinetics of trypsin proteolysis of the fusion protein (FP) containing human proinsulin was studied by a set of analytical micromethods. These were the microcolumn reversed-phase HPLC and the qualitative identification by MALDI-TOF mass spectrometry and amino acid sequencing. The first stage of the proteolysis was shown to be the cleavage of FP into the leader fragment and proinsulin. The subsequent splitting off ofC-peptide from proinsulin results in the formation of ArgB31-ArgB32-insulin. The effect of temperature on the formation of de-ThrB30-insulin, a by-product, was also studied. The structure of FP was confirmed by the peptide mapping technique, and the leader fragment was shown to contain noN-terminal Met residue. For communication I, see [1].  相似文献   

16.
Influenza virus assembles in the budozone, a cholesterol-/sphingolipid-enriched (“raft”) domain at the apical plasma membrane, organized by hemagglutinin (HA). The viral protein M2 localizes to the budozone edge for virus particle scission. This was proposed to depend on acylation and cholesterol binding. We show that M2–GFP without these motifs is still transported apically in polarized cells. Employing FRET, we determined that clustering between HA and M2 is reduced upon disruption of HA’s raft-association features (acylation, transmembranous VIL motif), but remains unchanged with M2 lacking acylation and/or cholesterol-binding sites. The motifs are thus irrelevant for M2 targeting in cells.  相似文献   

17.
The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac.  相似文献   

18.
We have measured the efficiencies of two novel pseudo-peptidic carriers and various cell-penetrating peptides (Penetratin, (Arg)9 and the third helix of the homeodomain of Knotted-1) to deliver the same cargo inside cells. The cargo that was studied corresponds to the pseudo-substrate of protein kinase C. Cargo delivery was quantified using a recent method based on isotope labeling and MALDI-TOF MS. Results of cargo delivery were compared to the amounts of free CPP internalized inside cells. The third helix of Knotted gave the best results concerning free CPP cellular uptake. It was also found to be the most efficient carrier. This peptide thus emerges as a new CPP with very promising properties.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号