首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Rezaie AR  He X 《Biochemistry》2000,39(7):1817-1825
The nature of residue 225 on a consensus loop in serine proteases determines whether a protease can bind Na(+). Serine proteases with a Pro at this position are unable to bind Na(+), but those with a Tyr or Phe can bind Na(+). Factor Xa (FXa), the serine protease of the prothrombinase complex, contains a Tyr at this position. Na(+) is also known to stimulate the amidolytic activity of FXa toward cleavage of small synthetic substrates, but the role of Na(+) in the prothrombinase complex has not been investigated. In this study, we engineered a Gla-domainless form of FX (GDFX) in which residue Tyr(225) was replaced with a Pro. We found that Na(+) stimulated the cleavage rate of chromogenic substrates by FXa or GDFXa approximately 8-24-fold with apparent dissociation constants [K(d(app))] of 37 and 182 mM in the presence and absence of Ca(2+), respectively. In contrast, Na(+) minimally affected the cleavage rate of these substrates by the mutant, and no K(d(app)) for Na(+) binding to the mutant could be estimated. Unlike the wild-type enzyme, the reactivity of the mutant with antithrombin was independent of Na(+) and impaired approximately 32-fold. Ca(2+) improved the reactivity of the mutant with antithrombin approximately 5-fold. Affinity of the mutant for binding to factor Va was weakened and its ability to activate prothrombin was severely impaired. Further studies with the wild-type prothrombinase complex revealed that FXa binds to factor Va with a similar K(d(app)) of 1. 1-1.8 nM in the presence of Na(+), K(+), Li(+), Ch(+), and Tris(+) and that the catalytic efficiency of prothrombinase is enhanced less than 1.5-fold by the specific effect of Na(+) in the reaction buffer. These results suggest that (1) the loop including residue 225 (225-loop) is a Na(+) binding site in FXa, (2) the Na(+)- and Ca(2+)-binding loops of FXa are allosterically linked, and (3) the Tyr conformer of the 225-loop is critical for factor Xa function; however, both Na(+)-bound and Na(+)-free forms of factor Xa in the prothrombinase complex can efficiently activate prothrombin.  相似文献   

2.
The S1 site (Asp(189)) of factor Xa (fXa) is located on a loop (residues 185-189) that contains three solvent-exposed charged residues (Asp(185), Lys(186), and Glu(188)) below the active-site pocket of the protease. To investigate the role of these residues in the catalytic function of fXa, we expressed three mutants of the protease in which the charges of these residues were neutralized by their substitutions with Ala (D185A, K186A, and E188A). Kinetic studies revealed that E188A has a normal catalytic activity toward small synthetic and natural substrates and inhibitors of fXa; however, the same activities were slightly ( approximately 2-fold) and dramatically ( approximately 20-50-fold) impaired for the D185A and K186A mutants, respectively. Further studies revealed that the affinity of D185A and K186A for interaction with Na(+) has also been altered, with a modest impairment ( approximately 2-fold) for the former and a dramatic impairment for the latter mutant. Both prothrombinase and direct binding studies indicated that K186A also has an approximately 6-fold impaired affinity for factor Va. Interestingly, a saturating concentration of factor Va restored the catalytic defect of K186A in reactions with prothrombin and the recombinant tick anticoagulant peptide that is known to interact with the Na(+) loop of fXa, but not with other substrates. These results suggest that factor Va interacts with 185-189-loop for fXa, which is energetically linked to the Na(+)-binding site of the protease.  相似文献   

3.
The interaction interface between human thrombin and human factor V (FV), necessary for complex formation and cleavage to generate factor Va, was investigated using a site-directed mutagenesis strategy. Fifty-three recombinant thrombins, with a total of 78 solvent-exposed basic and polar residues substituted with alanine, were used in a two-stage clotting assay with human FV. Seventeen mutants with less than 50% of wild-type (WT) thrombin FV activation were identified and mapped to anion-binding exosite I (ABE-I), anion-binding exosite II (ABE-II), the Leu(45)-Asn(57) insertion loop, and the Na(+) binding loop of thrombin. Three ABE-I mutants (R68A, R70A, and Y71A) and the ABE-II mutant R98A had less than 30% of WT activity. The thrombin Na(+) binding loop mutants, E229A and R233A, and the Leu(45)-Asn(57) insertion loop mutant, W50A, had a major effect on FV activation with 5, 15, and 29% of WT activity, respectively. The K52A mutant, which maps to the S' specificity pocket, had 29% of WT activity. SDS-polyacrylamide gel electrophoresis analysis of cleavage reactions using the thrombin ABE mutants R68A, Y71A, and R98A, the Na(+) binding loop mutant E229A, and the Leu(45)-Asn(57) insertion loop mutant W50A showed a requirement for both ABEs and the Na(+)-bound form of thrombin for efficient cleavage at the FV residue Arg(709). Several basic residues in both ABEs have moderate decreases in FV activation (40-60% of WT activity), indicating a role for the positive electrostatic fields generated by both ABEs in enhancing complex formation with complementary negative electrostatic fields generated by FV. The data show that thrombin activation of FV requires an extensive interaction interface with thrombin. Both ABE-I and ABE-II and the S' subsite are required for optimal cleavage, and the Na(+)-bound form of thrombin is important for its procoagulant activity.  相似文献   

4.
Yang L  Ding Q  Huang X  Olson ST  Rezaie AR 《Biochemistry》2012,51(19):4078-4085
High-molecular weight heparins promote the protein Z-dependent protease inhibitor (ZPI) inhibition of factors Xa (FXa) and XIa (FXIa) by a template mechanism. To map the heparin-binding site of ZPI, the role of basic residues of the D-helix (residues Lys-113, Lys-116, and Lys-125) in the interaction with heparin was evaluated by either substituting these residues with Ala (ZPI-3A) or replacing the D-helix with the corresponding loop of the non-heparin-binding serpin α(1)-proteinase inhibitor (ZPI-D-helix(α1-PI)). Furthermore, both the C-helix (contains two basic residues, Lys-104 and Arg-105) and the D-helix of ZPI were substituted with the corresponding loops of α(1)-proteinase inhibitor (ZPI-CD-helix(α1-PI)). All mutants exhibited near normal reactivity with FXa and FXIa in the absence of cofactors and in the presence of protein Z and membrane cofactors. By contrast, the mutants interacted with heparin with a lower affinity and the ~48-fold heparin-mediated enhancement in the rate of FXa inhibition by ZPI was reduced to ~30-fold for ZPI-3A, ~15-fold for ZPI-D-helix(α1-PI), and ~8-fold for ZPI-CD-helix(α1-PI). Consistent with a template mechanism for heparin cofactor action, ZPI-CD-helix(α1-PI) inhibition of a FXa mutant containing a mutation in the heparin-binding site (FXa-R240A) was minimally affected by heparin. A significant decrease (~2-5-fold) in the heparin template effect was also observed for the inhibition of FXIa by ZPI mutants. Interestingly, ZPI derivatives exhibited a markedly elevated stoichiometry of inhibition with FXIa in the absence of heparin. These results suggest that basic residues of both helices C and D of ZPI interact with heparin to modulate the inhibitory function of the serpin.  相似文献   

5.
Recombinant tick anticoagulant peptide (rTAP) is a highly selective inhibitor of blood coagulation factor Xa. rTAP has been characterized kinetically as a slow, tight-binding, competitive inhibitor of the enzyme. We used an approach consisting of both recombinant, site-directed mutagenesis and solid-phase chemical synthesis to generate 31 independent mutations in rTAP to identify those regions of the molecule which contribute to the specific, high-affinity binding interaction with factor Xa. Our results demonstrate that the four amino-terminal residues of rTAP constitute the primary recognition determinant necessary for the formation of the high-affinity enzyme-inhibitor complex. The Arg residue in position three is probably not interacting with the S1-specificity pocket of factor Xa in a substrate-like manner since substitution at this position with a D-Arg amino acid produced only a modest decrease in affinity (5-fold). An additional domain in the rTAP molecule located between residues 40 and 54 was identified as a probable secondary binding determinant. Interestingly, this region in rTAP shares significant amino acid sequence homology with a sequence in prothrombin immediately amino-terminal to the factor Xa cleavage site that generates meizothrombin. These observations indicate that specific segments within two different regions of the rTAP molecule contribute to the potent binding interaction between rTAP and factor Xa.  相似文献   

6.
Factor Xa (FXa) is a key protease of the coagulation pathway whose activity is known to be in part modulated by binding to factor Va (FVa) and sodium ions. Previous investigations have established that solvent-exposed, charged residues of the FXa alpha-helix 163-170 (h163-170), Arg(165) and Lys(169), participate in its binding to FVa. In the present study we aimed to investigate the role of the other residues of h163-170 in the catalytic functions of the enzyme. FX derivatives were constructed in which point mutations were made or parts of h163-170 were substituted with the corresponding region of either FVIIa or FIXa. Purified FXa derivatives were compared with wild-type FXa. Kinetic studies in the absence of FVa revealed that, compared with wild-type FXa, key functional parameters (catalytic activity toward prothrombin and tripeptidyl substrates and non-enzymatic interaction of a probe with the S1 site) were diminished by mutations in the NH(2)-terminal portion of h163-170. The defective amidolytic activity of these FXa derivatives appears to result from their impaired interaction with Na(+) because using a higher Na(+) concentration partially restored normal catalytic parameters. Furthermore, kinetic measurements with tripeptidyl substrates or prothrombin indicated that assembly of these FXa derivatives with an excess of FVa in the prothrombinase complex improves their low catalytic efficiency. These data indicate that residues in the NH(2)-terminal portion of the FVa-binding h163-170 are energetically linked to the S1 site and Na(+)-binding site of the protease and that residues Val(163) and Ser(167) play a key role in this interaction.  相似文献   

7.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

8.
Na(+) binding near the primary specificity pocket of thrombin promotes the procoagulant, prothrombotic, and signaling functions of the enzyme. The effect is mediated allosterically by a communication between the Na(+) site and regions involved in substrate recognition. Using a panel of 78 Ala mutants of thrombin, we have mapped the allosteric core of residues that are energetically linked to Na(+) binding. These residues are Asp-189, Glu-217, Asp-222, and Tyr-225, all in close proximity to the bound Na(+). Among these residues, Asp-189 shares with Asp-221 the important function of transducing Na(+) binding into enhanced catalytic activity. None of the residues of exosite I, exosite II, or the 60-loop plays a significant role in Na(+) binding and allosteric transduction. X-ray crystal structures of the Na(+)-free (slow) and Na(+)-bound (fast) forms of thrombin, free or bound to the active site inhibitor H-d-Phe-Pro-Arg-chloromethyl-ketone, document the conformational changes induced by Na(+) binding. The slow --> fast transition results in formation of the Arg-187:Asp-222 ion pair, optimal orientation of Asp-189 and Ser-195 for substrate binding, and a significant shift of the side chain of Glu-192 linked to a rearrangement of the network of water molecules that connect the bound Na(+) to Ser-195 in the active site. The changes in the water network and the allosteric core explain the thermodynamic signatures linked to Na(+) binding and the mechanism of thrombin activation by Na(+). The role of the water network uncovered in this study establishes a new paradigm for the allosteric regulation of thrombin and other Na(+)-activated enzymes involved in blood coagulation and the immune response.  相似文献   

9.
SEA0400 is a potent and selective Na(+)/Ca(2+) exchanger (NCX) inhibitor. We evaluated the inhibitory effects of SEA0400 on Na(+)(i)-dependent (45)Ca(2+) uptake and whole-cell Na(+)/Ca(2+) exchange currents in NCX-transfected fibroblasts. SEA0400 preferentially inhibited (45)Ca(2+) uptake by NCX1 compared with inhibitions by NCX2, NCX3, and NCKX2. SEA0400 also selectively blocked outward exchange currents from NCX1 transfectants. We searched for regions that may form the SEA0400 receptor in the NCX1 molecule by NCX1/NCX3 chimeric analysis. The results suggest that the first intracellular loop and the fifth transmembrane segment are mostly responsible for the differential drug responses between NCX1 and NCX3. Further site-directed mutagenesis revealed that multiple mutations at Phe-213 markedly reduced sensitivity to SEA0400 without affecting that to KB-R7943. We also found that Gly-833-to-Cys mutation (within the alpha-2 repeat) greatly reduced the inhibition by SEA0400, but unexpectedly the NCX1 chimera with an alpha-2 repeat from NCKX2 possessed normal drug sensitivity. In addition, exchangers with mutated exchanger inhibitory peptide regions, which display either undetectable or accelerated Na(+)-dependent inactivation, had a markedly reduced sensitivity or hypersensitivity to SEA0400, respectively. To verify the efficacy of the NCX inhibitor, we examined the renoprotective effect of SEA0400 in a hypoxic injury model using porcine renal tubular cells. SEA0400 protected against hypoxia/reoxygenation-induced cell damage in tubular cells expressing wild-type NCX1 but not in cells expressing SEA0400-insensitive mutants. These results suggest that Phe-213, Gly-833, and residues that eliminate Na(+)-dependent inactivation are critical determinants for the inhibition by SEA0400, and their mutants are very useful for checking the pharmacological importance of NCX inhibition by SEA0400.  相似文献   

10.
To identify important amino acid residues involved in intracellular pH (pH(i)) sensing of Na(+)/H(+) exchanger 1, we produced single-residue substitution mutants in the region of the exchanger encompassing the putative 11th transmembrane segment (TM11) and its adjacent intracellular (intracellular loop (IL) 5) and extracellular loops (extracellular loop 6). Substitution of Arg(440) in IL5 with other residues except positively charged Lys caused a large shift in pH(i) dependence of (22)Na(+) uptake to an acidic side, whereas substitution of Gly(455) or Gly(456) within the highly conserved glycine-rich sequence of TM11 shifted pH(i) dependence to an alkaline side. The observed alkaline shift was larger with substitution of Gly(455) with residues with increasing sizes, suggesting the involvement of the steric effect. Interestingly, mutation of Arg(440) (R440D) abolished the ATP depletion-induced acidic shift in pH(i) dependence of (22)Na(+) uptake as well as the cytoplasmic alkalinization induced by various extracellular stimuli, whereas with that of Gly(455) (G455Q) these functions were preserved. These mutant exchangers did not alter apparent affinities for extracellular transport substrates Na(+) and H(+) and the inhibitor 5-(N-ethyl-N-isopropyl)amiloride. These results suggest that positive charge at Arg(440) is required for normal pH(i) sensing, whereas mutation-induced perturbation of the TM11 structure may be involved in the effects of Gly mutations. Thus, both Arg(440) in IL5 and Gly residues in the conserved segment of TM11 appear to constitute important elements for proper functioning of the putative "pH(i) sensor" of Na(+)/H(+) exchanger 1.  相似文献   

11.
S P Jordan  L Waxman  D E Smith  G P Vlasuk 《Biochemistry》1990,29(50):11095-11100
Tick anticoagulant peptide (TAP) is a 60 amino acid protein which is a highly specific inhibitor of human blood coagulation factor Xa (fXa) isolated from the tick Ornithodoros moubata [Waxman, L., Smith, D. E., Arcuri, K. E., & Vlasuk, G. P. (1990) Science 248, 593-596]. Due to the limited quantities of native TAP, a recombinant version of TAP produced in Saccharomyces cerevisiae was used for a detailed kinetic analysis of the inhibition interaction with human fXa. rTAP was determined to be a reversible, slow, tight-binding inhibitor of fXa, displaying a competitive type of inhibition. The binding of rTAP to fXa is stoichiometric with a dissociation constant of (1.8 +/- 0.02) x 10(-10) M, a calculated association rate constant of (2.85 +/- 0.07) x 10(6) M-1 s-1, and a dissociation rate constant of (0.554 +/- 0.178) x 10(-3) s-1. Binding studies show that 35S-rTAP binds only to fXa and not to DFP-treated fXa or zymogen factor X, which suggests the active site of fXa is required for rTAP inhibition. That rTAP is a unique serine proteinase inhibitor is suggested both by its high specificity for its target enzyme, fXa, and also by its unique structure.  相似文献   

12.
The activation of antithrombin (AT) by heparin facilitates the exosite-dependent interaction of the serpin with factors IXa (FIXa) and Xa (FXa), thereby improving the rate of reactions by 300- to 500-fold. Relative to FXa, AT inhibits FIXa with ∼40-fold slower rate constant. Structural data suggest that differences in the residues of the 39-loop (residues 31–41) may partly be responsible for the differential reactivity of the two proteases with AT. This loop is highly acidic in FXa, containing three Glu residues at positions 36, 37, and 39. By contrast, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. To determine whether differences in the residues of this loop contribute to the slower reactivity of FIXa with AT, we prepared an FIXa/FXa chimera in which the 39-loop of the protease was replaced with the corresponding loop of FXa. The chimeric mutant cleaved a FIXa-specific chromogenic substrate with normal catalytic efficiency, however, the mutant exhibited ∼5-fold enhanced reactivity with AT specifically in the absence of the cofactor, heparin. Further studies revealed that the FIXa mutant activates factor X with ∼4-fold decreased kcat and ∼2-fold decreased Km, although the mutant interacted normally with factor VIIIa. Based on these results we conclude that residues of the 39-loop regulate the cofactor-independent interaction of FIXa with its physiological inhibitor AT and substrate factor X.  相似文献   

13.
Rezaie AR  Yang L  Manithody C 《Biochemistry》2004,43(10):2898-2905
A unique pentasaccharide fragment of high-affinity heparin activates antithrombin (AT) to enhance its rate of complex formation with factor Xa (FXa) by 200-300-fold. Recent results have indicated that the activation of AT is associated with the exposure of a cryptic exosite on the serpin that is an interactive site for FXa in the complex. Previously, we identified Arg(150) on the autolysis loop of FXa as a candidate residue that may specifically interact with the heparin-activated AT. Three other surface loops on FXa including 39, 60, and the sodium-binding 220 loops have been implicated to be critical for the protease interaction with the activated AT. To determine the extent of the contribution of these loops to the specificity of the FXa interaction with activated AT, several loop mutants of the protease were prepared and their reactivity with AT was studied in both the absence and presence of pentasaccharide. Analysis of the inhibition kinetic data suggests that the residues of both 39 and 60 loop make a minor contribution to the recognition of AT in both the native and activated conformation of the serpin. On the other hand, the reactivity of AT with the sodium loop mutants of FXa in the absence of the cofactor was severely impaired. However, the extent of the rate-accelerating effect of pentasaccharide in the AT inhibition of the mutants was not affected. These results suggest that all three loops play a role in the specificity of the FXa-AT interaction; however, neither loop specifically interacts with the activated conformation of the serpin.  相似文献   

14.
Two loop segments (183-189 and 221-225) in the protease domain of factor Xa contribute to the formation of a Na(+)-binding site. Studies with factor Xa indicate that binding of a single Na(+) ion to this site influences its activity by altering the S1 specificity site, and substitution of Tyr(225) with Pro diminishes sensitivity to Na(+). Using full-length factor Xa(Y225P), the allosteric relationship between the Na(+) site and other structural determinants in factor Xa and prothrombinase was investigated. Direct binding and kinetic measurements with probes that target the S1 specificity pocket indicate that assembly of the mutant in prothrombinase corrected the impaired binding of these probes observed with free factor Xa(Y225P). This appears to result from the apparent allosteric linkage between the factor Va, S1, and Na(+)-binding sites, since binding of the cofactor to membrane-bound factor Xa(Y225P) enhances binding at the S1 site and vice versa. Additional studies revealed that the internal salt bridge (Ile(16)-Asp(194)) of factor Xa(Y225P) is partially destabilized, a process that is reversible upon occupation of the S1 site. The data establish that alterations at the factor Xa Na(+)-binding site shift the zymogen-protease equilibrium to a more zymogen-like state, and as a consequence binding of S1-directed probes and factor Va are adversely affected. Therefore, the zymogen-like characteristics of factor Xa(Y225P) have allowed for the apparent allosteric linkage between the S1, factor Va, and Na(+) sites to become evident and has provided insight into the structural transitions which accompany the conversion of factor X to factor Xa.  相似文献   

15.
T Atsumi  S Sugiyama  E J Cragoe  Jr    Y Imae 《Journal of bacteriology》1990,172(3):1634-1639
Amiloride, a specific inhibitor for the Na(+)-driven flagellar motors of alkalophilic Bacillus strains, was found to cause growth inhibition; therefore, the use of amiloride for the isolation of motility mutants was difficult. On the other hand, phenamil, an amiloride analog, inhibited motor rotation without affecting cell growth. A concentration of 50 microM phenamil completely inhibited the motility of strain RA-1 but showed no effect on the membrane potential, the intracellular pH, or Na(+)-coupled amino acid transport, which was consistent with the fact that there was no effect on cell growth. Kinetic analysis of the inhibition of motility by phenamil indicated that the inhibition was noncompetitive with Na+ in the medium. A motility mutant was isolated as a swarmer on a swarm agar plate containing 50 microM phenamil. The motility of the mutant showed an increased resistance to phenamil but normal sensitivity to amiloride. These results suggest that phenamil and amiloride interact at different sites on the motor. By examining various bacterial species, phenamil was found to be a specific and potent inhibitor for the Na(+)-driven flaggellar motors not only in various strains of alkalophilic Bacillus spp. but also in a marine Vibrio sp.  相似文献   

16.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.  相似文献   

17.
The epithelial Na(+) channel (ENaC) is typically formed by three homologous subunits (alpha, beta, and gamma) that possess a characteristic large extracellular loop (ECL) containing 16 conserved cysteine (Cys) residues. We investigated the functional role of these Cys residues in Na(+) self-inhibition, an allosteric inhibition of ENaC activity by extracellular Na(+). All 16 Cys residues within alpha and gamma ECLs and selected beta ECL Cys residues were individually mutated to alanine or serine residues. The Na(+) self-inhibition response of wild type and mutant channels expressed in Xenopus oocytes was determined by whole cell voltage clamp. Individual mutation of eight alpha (Cys-1, -4, -5, -6, -7, -10, -13, or -16), one beta (Cys-7), and nine gamma (Cys-3, -4, -6, -7, -10, -11, -12, -13, or -16) residues significantly reduced the magnitude of Na(+) self-inhibition. Na(+) self-inhibition was eliminated by simultaneous mutations of either the last three alpha ECL Cys residues (Cys-14, -15, and -16) or Cys-7 within both alpha and gamma ECLs. By analyzing the Na(+) self-inhibition responses and the effects of a methanethiosulfonate reagent on channel currents in single and double Cys mutants, we identified five Cys pairs within the alphaECL (alphaCys-1/alphaCys-6, alphaCys-4/alphaCys-5, alphaCys-7/alphaCys-16, alphaCys-10/alphaCys-13, and alphaCys-11/alphaCys-12) and one pair within the gammaECL (gammaCys-7/gammaCys-16) that likely form intrasubunit disulfide bonds. We conclude that approximately half of the ECL Cys residues in the alpha and gamma ENaC subunits are required to establish the tertiary structure that ensures a proper Na(+) self-inhibition response, likely by formation of multiple intrasubunit disulfide bonds.  相似文献   

18.
Loop 52-72 of porcine fructose-1,6-bisphosphatase may play a central role in the mechanism of catalysis and allosteric inhibition by AMP. The loop pivots between different conformational states about a hinge located at residues 50 and 51. The insertion of proline separately at positions 50 and 51 reduces k(cat) by up to 3-fold, with no effect on the K(m) for fructose 1,6-bisphosphate. The K(a) for Mg(2+) in the Lys(50) --> Pro mutant increases approximately 15-fold, whereas that for the Ala(51) --> Pro mutant is unchanged. Although these mutants retain wild-type binding affinity for AMP and the fluorescent AMP analog 2'(3')-O-(trinitrophenyl)adenosine 5'-monophosphate, the K(i) for AMP increases 8000- and 280-fold in the position 50 and 51 mutants, respectively. In fact, the mutation Lys(50) --> Pro changes the mechanism of AMP inhibition with respect to Mg(2+) from competitive to noncompetitive and abolishes K(+) activation. The K(i) for fructose 2,6-bisphosphate increases approximately 20- and 30-fold in the Lys(50) --> Pro and Ala(51) --> Pro mutants, respectively. Fluorescence from a tryptophan introduced by the mutation of Tyr(57) suggests an altered conformational state for Loop 52-72 due to the proline at position 50. Evidently, the Pro(50) mutant binds AMP with high affinity at the allosteric site, but the mechanism of allosteric regulation of catalysis has been disabled.  相似文献   

19.
The enzyme complex prothrombinase plays a pivotal role in fibrin clot development through the production of thrombin, making this enzyme complex an attractive target for therapeutic regulation. This study both functionally and structurally characterizes a potent, highly selective, active site directed inhibitor of human factor Xa and prothrombinase, PD0313052, and identifies structurally conserved residues in factor Xa and prothrombinase. Analyses of the association and dissociation of PD0313052 with human factor Xa identified a reversible, slow-onset mechanism of inhibition and a simple, single-step bimolecular association between factor Xa and PD0313052. This interaction was governed by association (k(on)) and dissociation (k(off)) rate constants of (1.0 +/- 0.1) x 10(7) M(-1) s(-1) and (1.9 +/- 0.5) x 10(-3) s(-1), respectively. The inhibition of human factor Xa by PD0313052 displayed significant tight-binding character described by a Ki* = 0.29 +/- 0.08 nM. Similar analyses of the inhibition of human prothrombinase by PD0313052 also identified a slow-onset mechanism with a Ki* = 0.17 +/- 0.03 nM and a k(on) and k(off) of (0.7 +/- 0.1) x 10(7) M(-1) s(-1) and (1.7 +/- 0.8) x 10(-3) s(-1), respectively. Crystals of factor Xa and PD0313052 demonstrated hydrogen bonding contacts within the S1-S4 pocket at residues Ser195, Asp189, Gly219, and Gly216, as well as interactions with aromatic residues within the S4 pocket. Overall, these data demonstrate that the inhibition of human factor Xa by PD0313052 occurs via a slow, tight-binding mechanism and indicate that active site residues of human factor Xa, including the catalytic Ser195, are effectively unaltered following assembly into prothrombinase.  相似文献   

20.
Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the conformational transitions between E(1) and E(2) forms of dephospho- and phosphoenzyme, (ii) Na(+) binding at the cytoplasmically facing sites of E(1), and (iii) long-range interaction controlling dephosphorylation. In mutants Glu(282) --> Lys and Glu(282) --> Asp, the E(1) form was favored during ATP hydrolysis, whereas the E(2) form was favored in Glu(282) --> Ala and Glu(282) --> Gly. Regardless of the change of conformational equilibrium, all the mutants displayed a reduced apparent affinity for Na(+), at least 3-fold for Glu(282) --> Lys and Glu(282) --> Asp, suggesting a direct effect on the Na(+) binding properties of E(1). Glu(282) --> Ala and Glu(282) --> Gly exhibited an extraordinary high rate of ATP hydrolysis in the mere presence of Na(+) without K(+) ("Na(+)-ATPase activity"), because of an increased rate of dephosphorylation of E(2)P. These results are in accordance with the hypothesis that Glu(282) is involved in the communication between the cation binding pocket and the catalytic site and in control of the cytoplasmic entry pathway for Na(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号