首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented from probe measurements carried out in the scrape-off layer of the FT-2 tokamak in the course of additional lower hybrid heating, during which an L-H transition was observed. The objective of this study was to obtain information on the parameters of blobs-turbulent structures with enhanced plasma density. The measurements were performed not only on the low-field side of the torus, but also on the high-field side, which is still poorly studied. Coherent structures with radial velocities directed both toward the vessel wall and into the plasma column were revealed at the tokamak periphery. Blobs propagating toward the vessel wall were found to prevail both before and after the L-H transition. The average radial velocity of blobs in the L- and H-modes was determined experimentally. The dependence of the radial blob velocity on the transverse size and density of the structure agrees with the ballooning mode model. It is found that the average value of the poloidal blob velocity is four to five times higher than the average radial velocity. The results of measurements carried out on both sides of the torus indicate the presence of internal poloidal polarization of blobs. The average drift velocity of such polarized structures is directed toward the vessel wall. The L-H transition is accompanied by a reduction in the radial velocity. At the same time, the average plasma density inside the structures observed on the low-field side increases appreciably during the transition. The obtained dependences of the radial blob velocity on the plasma density inside the structure generally agree with predictions of the ballooning mode model.  相似文献   

2.
Analytic expressions for the velocity profile and distribution of neutrally buoyant particles in laminar flow were obtained as functions of the radial distance. A modified Einstein viscosity model and the hypothesis that the total force on all the particles flowing in the tube is a minimum were used. The methods of the variational calculus were used in the mathematical development. A velocity profile differing only slightly from the parabolic form of that for Hagan-Poiseuille flow was obtained. For particle distribution the equations developed predict a maximum concentration along the center-line for some flows and a maximum concentration in a ring some distance from the center line in other flows. Both of these concentration profiles have been observed experimentally. Quantitative predictions from the equations derived must await further experimental work to permit calculation of the parameters included in the equations.  相似文献   

3.
Previous studies in healthy humans have established that the (approximately 850 ml) volume enclosed by the pericardial sac is nearly constant over the cardiac cycle, exhibiting a transient approximately 5% decrease (approximately 40 ml) from end diastole to end systole. This volume decrease manifests as a "crescent" at the ventricular free wall level when short-axis MRI images of the epicardial surface acquired at end systole and end diastole are superimposed. On the basis of the (near) constant-volume property of the four-chambered heart, the volume decrease ("crescent effect") must be restored during subsequent early diastolic filling via the left atrial conduit volume. Therefore, volume conservation-based modeling predicts that pulmonary venous (PV) Doppler D-wave volume must be causally related to the radial displacement of the epicardium (Delta) (i.e., magnitude of "crescent effect" in the radial direction). We measured Delta from M-mode echocardiographic images and measured D-wave velocity-time integral (VTI) from Doppler PV flow of the right superior PV in 11 subjects with catheterization-determined normal physiology. In accordance with model prediction, high correlation was observed between Delta and D-wave VTI (r=0.86) and early D-wave VTI measured to peak D-wave velocity (r=0.84). Furthermore, selected subjects with various pathological conditions had values of Delta that differed significantly. These observations demonstrate the volume conservation-based causal relationship between radial pericardial displacement of the left ventricle and the PV D-wave-generated filling volume in healthy subjects as well as the potential role of the M-mode echo-derived radial epicardial displacement index Delta as a regional (radial) parameter of diastolic function.  相似文献   

4.
Simple theoretical models are proposed for the study of the interdependence between cardiac contraction, arterial pressure, and capillary drainage. The relation between pressure and flow is derived for a model of branching distensible tubes taking into account the finite pulse wave velocity. Equations are derived both for the case where the pulse wave is non-distorted and for the case where the wave is damped and distorted to a limited extent. Following the model of J. W. Remington and W. F. Hamilton (1947), the former case is applied to the larger arteries. Expressions are developed for the stroke volume, cardiac ejection, and systolic arterial storage in both the steady and non-steady states. Expressions for the percentage discrepancy involved in the computation of these quantities from a single tube model as contrasted with a multi-branched model are derived. For typical cases these discrepancies are small and thus credence is lent to the further use of the simpler single tube model which requires fewer independent parameters. It is also shown that the formulae for stroke volume and arterial storage are only slightly sensitive to changes in pulse wave velocities, and that for some purposes it would seem permissible to assume an infinite velocity. The problem of capillary drainage is discussed, and the consequences of equations developed for the case of a distorted wave are shown to compare favorably with published experimental data. An approximate boundary condition for capillary drainage is derived. Finally, A. V. Hill's velocity load equation for muscle is used to obtain a first approximation for the velocity of cardiac contraction in terms of the initial arterial pressure, the heart radius, and the parameters of the heart musculature. It is shown how methods developed for stroke volume determination from the pressure contour may be used to estimate the heart and “air chamber” parameters. Use of these parameters and those obtained by other independent measurements permits the principle variables to be determined numerically.  相似文献   

5.
The object of our study is: a model for root growth through a free-boundary problem and the effects resulting from differences in nutrient availability and transport of only one mobile nutrient between the root surface and the rhizosphere produced by an absorption Michaelis-Menten for low and high concentrations. The model equations are solved by two methods: the quasi-stationary method and the balance integral method. The numerical solutions are used to compute radial root growth. Curves of nutrient concentration at the root-soil interface, curve as a function of root radius as well as curves representing root radius as a function of time are plotted. The parameters which are varied are the root absorption power, flux velocity at the root surface, efflux, rhizosphere radius, diffusion coefficient, buffer power, and maximum influx. The two methods show the theoretical results for radial root growth in the range of low and high concentrations. The balance integral method provides more detailed information.  相似文献   

6.
This work reports a gel network formed by rigid schizophyllan (SPG) chains with Borax as a cross-linking agent. The formed cross-links are non-permanent and somewhat dynamic in nature because the cross-linking reaction is governed by a complexation equilibrium. Gelation processes are traced by dynamic viscoelastic measurements to examine the effects of Borax content, SPG concentration, temperature, salt concentration, salt type, and strain. The first-order kinetic model containing three parameters, t(0) (induction time), 1/tau(c) (gelation rate), and (saturated storage modulus), is successfully applied to describe the gelation of the SPG-Borax system. Gelation occurs faster at higher Borax content, higher SPG concentration, higher salt concentration, or lower temperature. Moreover the gelation is cation-type-specific. Storage modulus is a linear function of both Borax content and SPG concentration. The linear relationship between storage modulus and Borax content can be explained by a modified ideal rubber elasticity theory with a front factor alpha to take into account the presence of ineffective cross-links and the effect of SPG chain rigidity. On the other hand, the linear dependence of storage modulus on SPG concentration could be explained on the basis of chain-chain contacting behavior of extended SPG chains. Apparent activation energy and cross-linking enthalpy are calculated to be -74.5 and -32.4 kJ/mol for the present system. Strain sweep measurements manifest that the elasticity behavior of this gel starts to deviate from Gaussian-chain network at a small strain of 10%.  相似文献   

7.
A steady-state model of oxygen distribution in a cardiac tissue construct with a parallel channel array was developed and solved for a set of parameters using the finite element method and commercial software (FEMLAB). The effects of an oxygen carrier [Oxygent; 32% volume perfluorocarbon (PFC) emulsion] were evaluated. The parallel channel array mimics the in vivo capillary tissue bed, and the PFC emulsion has a similar role as the natural oxygen carrier hemoglobin in increasing total oxygen content. The construct was divided into an array of cylindrical domains with a channel in the center and tissue space surrounding the channel. In the channel, the main modes of mass transfer were axial convection and radial diffusion. In the tissue region, mass transfer was by axial and radial diffusion, and the consumption of oxygen was by Michaelis-Menten kinetics. Neumann boundary conditions were imposed at the channel centerline and the half distance between the domains. Supplementation of culture medium by PFC emulsion improved mass transport by increasing convective term and effective diffusivity of culture medium. The model was first implemented for the following set of experimentally obtained parameters: construct thickness of 0.2 cm, channel diameter of 330 mum, channel center-to-center spacingof 700 microm, and average linear velocity per channel of 0.049 cm/s, in conjunction with PFC supplemented and unsupplemented culture medium. Subsequently, the model was used to define favorable scaffold geometry and flow conditions necessary to cultivate cardiac constructs of high cell density (10(8) cells/ml) and clinically relevant thickness (0.5 cm). In future work, the model can be utilized as a tool for optimization of scaffold geometry and flow conditions.  相似文献   

8.
A methodology for the modeling of unsteady heat conduction in polymethylmethacrylate (PMMA) during its exothermic polymerization is presented. The emphasis is on the formulation of a model for the volumetric rate of heat generation, including its temperature-dependent characteristics. Three parameters appear in the proposed model. The empirical determination of these parameters using Differential Scanning Calorimetry is demonstrated. The incorporation of the proposed model into finite volume methods is also demonstrated, in the context of unsteady, one-dimensional, radial heat conduction in cylindrical coordinates. In addition, the application of the proposed model to two test problems is presented and discussed. The results are encouraging, and the proposed methodology appears to be applicable to the thermal modeling of exothermic polymerization processes in general.  相似文献   

9.
The velocity of propagation of a disturbance wave in a liquid flowing in a distensible tube is computed. The mathematical model is more general than those used in previous analyses: the tube wall properties are realistic; the convective part of the axial inertia forces is taken into account; radial inertia forces of both the fluid and tube wall are present; viscous stresses are present. Four parameters influencing the velocity of propagation are obtained and discussed. Curves are plotted illustrating the effects of the parameters. Contrary to the results of previous analyses, viscous effects are shown to be appreciable in blood flow. It is also shown that radial inertia effects can be important in laboratory set-ups. The material presented in this paper was adapted from the Ph.D. thesis written by the author at Harvard University.  相似文献   

10.
The edge plasma parameters were measured by means of a Mach probe in a lithium experiment on the T-11M tokamak. The angular and radial distributions of the ion saturation current, along with the radial distribution of the electron temperature, were obtained in different modes of tokamak operation. The radial distributions of the electron temperature and ion saturation current in the main operating mode (L-mode) revealed a peak in the scrape-off-layer of the vertical limiter (lithium emitter), which can indicate the formation of a magnetic island in this region. The measured plasma flow velocity along the magnetic field was found to be close to one-half of the ion sound velocity for Li+ ions.  相似文献   

11.
Using indirect immunofluorescence methods, we have localized for the first time in the newt, Notophthalmus viridescens, beta-endorphin (beta-ep)-like immunoreactivity in the neurons of spinal ganglia (SPG), spinal cord (SPC), as well as in the hypothalamic region of the brain. An examination of serially sectioned SPG showed that the beta-ep-positive neurons, cell bodies, and nerve fibers were distributed at all levels of SPG. Peripheral regions of the perikarya of beta-ep-positive SPG neurons exhibited intense staining for beta-ep, the central nuclear region remaining nonreactive. In SPC, brightly staining fibers were seen entering the afferent nociceptive input areas, namely the Lissauer's tracts, substantia gelatinosa, and the dorsal ascending columns. Dot-fiber immunofluorescence pattern was observed throughout the gray matter of SPC representing beta-ep-positive, secondary sensory neurons as well as interneurons. Also, discrete cluster of neurons located deep in the gray matter of SPC stained positively to beta-ep antisera. This study not only demonstrates for the first time the presence of beta-ep like material in the newt, more specifically in SPG and SPC, but also raises the question of a possible link between beta-ep and newt limb regeneration as previous work has shown that SPG support limb regeneration in a denervated-amputated newt forelimb.  相似文献   

12.
(1-->3)-beta-D-glucans are known as potent inductors of humoral and cell-mediated immunity in humans and animals. (1-->3)-beta-D-glucans isolated from various sources differ in their chemical structure and physical parameters and consequently in their immunomodulatory potential. In this study the immunomodulatory activity of two (1-->3)-beta-D-glucans schizophyllan (SPG) and carboxymethylglucan (CMG) was determined and compared on human blood leukocytes in vitro. Both SPG and CMG activated blood phagocytes and lymphocytes as demonstrated by increased whole blood production of reactive oxygen species, by increased production of pro-inflammatory cytokines IL-6, IL-8, and TNF-alpha, by increased surface expression of CD69 on lymphocytes, and by altered expression of CD11b and CD62L on polymorphonuclear leukocytes and monocytes. SPG demonstrated a significantly higher potential to stimulate blood phagocytes and production of selected pro-inflammatory cytokines than CMG. The higher potency of SPG to stimulate human blood phagocytes in vitro could be caused by factors such as higher branching frequencies or neutral polymer charge of SPG or different conformation in solution if compared with CMG.  相似文献   

13.
Synthesis and secretion of bactericidal protein (cecropin) and lysozyme were induced by soluble peptidoglycan fragments (SPG) from Escherichia coli in a culture of fat body from Bombyx mori larvae. The rate of the secretion by fat body increased as a function of SPG concentration added to the culture medium. The induction of bactericidal activity was specific for peptidoglycan of a particular structure. Thus, SPG from Micrococcus luteus was 500-times less potent than E. coli SPG, and various glucans and peptides structurally related to peptidoglycan were all ineffective as elicitor. These results support the hypothesis that bacteria invading the haemocoel have to be partially degraded to generate peptidoglycan fragments as a signal molecule, which subsequently acts on a receptor on fat body cells and induces antibacterial protein synthesis.  相似文献   

14.
Expanded-bed adsorption (EBA) is a technique for primary recovery of proteins starting from unclarified broths. This process combines centrifugation, concentration, filtration, and initial capturing of the proteins in a single step. An expanded bed (EB) is comparable to a packed bed in terms of separation performance but its hydrodynamics are that of a fluidized bed. Downstream process development involving EBA is normally carried out in small columns to minimize time and costs. Our purpose here is to characterize the hydrodynamics of expanded beds of different diameters, to develop scaling parameters that can be reliably used to predict separation efficiency of larger EBA columns. A hydrodynamic model has been developed which takes into account the radial liquid velocity profile in the column. The scale-down effect can be characterized in terms of apparent axial dispersion, D(axl,app), and plate number, N(EB), adapted for expanded bed. The model is in good agreement with experimental results obtained from 1- and 5-cm column diameters with buffer solutions of different viscosities. The model and the experiments show an increase of apparent axial dispersion with an increase in column diameter. Furthermore, the apparent axial dispersion is affected by an increase in liquid velocity and viscosity. Supported by visual observations and predictions from the model, it was concluded that operating conditions (liquid viscosity and superficial velocity) resulting in a bed-void fraction between 0.7 and 0.75 would provide the optimal separation efficiency in terms of N(EB).  相似文献   

15.
Recent applications of 20 MHz pulsed ultrasound Doppler velocimetry (PUDVM) in microsurgical research have necessarily employed piezoelectric crystals whose diameter is not negligible compared to the lumen size (1-2 mm) of many vessels of interest. A three-dimensional numerical model was developed to explore relationships between actual and detected flow field parameters, for (steady) Poiseuille flow, when appreciable velocity gradients exist within the PUDVM sample volume. Validation studies showed that highly accurate velocity profiles could be obtained in the limiting case of a very small sample volume (0.1 mm radius), but that for currently employed crystals (approximately equal to 0.5 mm radius) there was appreciable underestimation of the centersteam velocity, and appreciable overestimation of the flow stream diameter. Errors in perceived velocity and flow rate were found to be relatively insensitive to perturbations in the sample volume thickness, in the size of the sampling range increment, or in the angle of insonation beam divergence. By contrast, these apparent flow parameters were found to be very sensitive to perturbations of sample volume diameter or of the Doppler angle. Small variations in the degree of partial sample volume overlap of the flowstream periphery were shown to be capable of causing large fluctuations in apparent flow stream diameter.  相似文献   

16.
In this paper, we examine the effects of SPG, which is a well known BRM, both in vivo and in vitro on the neutrophilic ROS production and the serum opsonic activity by the chemiluminescence technique using luminol as a probe. To investigate the in vivo effects, SPG was administered to 12 healthy male volunteers and two phases of enhancement of the neutrophilic ROS production and the serum opsonic activity were observed. In vitro, the addition of SPG showed a dose-dependent suppression. To investigate the mechanisms in these contradictory effects of SPG, supernatants of a lymphocytes culture medium in the presence of SPG with or without mitogen were added to the neutrophils. The addition of supernatants at a lower concentration of SPG (0.01 mg/ml) with mitogens showed significant preventive effects on the neutrophilic ROS production for the duration of incubation. This suggests that cytokines derived from lymphocytes may contribute to the in vivo effects of SPG. SPG can play an important role in the host’s defense against microbe infections by enhancing it’s effect on non-specific immunity when administered in vivo  相似文献   

17.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

18.
Scale-up on basis of structured mixing models: A new concept   总被引:1,自引:0,他引:1  
A new scale-up concept based upon mixing models for bioreactors equipped with Rushton turbines using the tanks-in-series concept is presented. The physical mixing model includes four adjustable parameters, i.e., radial and axial circulation time, number of ideally mixed elements in one cascade, and the volume of the ideally mixed turbine region. The values of the model parameters were adjusted with the application of a modified Monte-Carlo optimization method, which fitted the simulated response function to the experimental curve. The number of cascade elements turned out to be constant (N = 4). The model parameter radial circulation time is in good agreement with the one obtained by the pumping capacity. In case of remaining parameters a first or second order formal equation was developed, including four operational parameters (stirring and aeration intensity, scale, viscosity). This concept can be extended to several other types of bioreactors as well, and it seems to be a suitable tool to compare the bioprocess performance of different types of bioreactors. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
Kupffer cells (KC), resident macrophages of the liver, have been strongly implicated in lipopolysaccharide (LPS)-induced liver graft injury. However, our recent study showed that sizofiran (schizophyllan glucan) (SPG), which activates KC, did not influence cold ischemia-reperfusion liver injury of LPS-exposed rats. Here we investigated some mechanisms by which SPG does not aggravate LPS-enhanced cold ischemia-reperfusion rat liver injury. Control and SPG-treated rats were exposed to LPS for 2 h prior to hepatectomy. The livers were cold-preserved in University of Wisconsin solution followed by reperfusion with Krebs-Henseleit buffer. We found that SPG dramatically inhibited LPS-induced increases of tumor necrosis factor-alpha (TNF-alpha) in the plasma and bile in vivo. Moreover, LPS-induced TNF- release into the washout solution after cold ischemia was also abrogated by SPG pretreatment. However, SPG increased TNF- release into the perfusate after reperfusion. On the other hand, SPG completely abolished expression of c-myc protooncogene, which is known to sensitize cells to TNF-alpha cytotoxicity. In conclusion, inhibition of both TNF- release after LPS challenge and c-myc expression may explain why activation of KC with SPG does not aggravate endotoxin-enhanced cold ischemia-reperfusion liver injury.  相似文献   

20.
A model of gas exchange by low-tidal-volume (VT), high-frequency ventilation (HFV) is presented, based on the physical principles of dispersion. These are the nonuniformity of the velocity profile and the nonreversible mixing of fluid components in a diffusive manner. A numerical method was used to incorporate these principles into a quantitative model. The airways of a symmetrically bifurcating bronchial-tree model were partitioned in the radial direction into two concentric layers representing the kinematic dispersion by nonuniformity of the velocity profile. Mixing between the layers was invoked in proportion to the diffusivity and local dimensions. The effects of frequency (f), VT, shape of the velocity profile, and bronchial-model configuration were tested in the model, with favorable comparison to available experimental data. The model predicts that for a frequency-dependent velocity profile, the rate of tracer exchange is proportional to the square root of f and to the square of VT-V0, where V0 is a constant small volume under which gas exchange was nil. Intracycle asymmetric mixing is predicted to have a stronger effect on gas exchange than asymmetric velocity profile. Gas exchange when turbulent-flow regime is assumed is predicted to be less for the higher VT values than with laminar flow and with mixing by molecular diffusivity. This model was found to be didactic, flexible, and capable of modeling combinations of factors affecting either one of the two fundamental processes of dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号