首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graves JA  Henry SA 《Genetics》2000,154(4):1485-1495
The ino2Delta, ino4Delta, opi1Delta, and sin3Delta mutations all affect expression of INO1, a structural gene for inositol-1-phosphate synthase. These same mutations affect other genes of phospholipid biosynthesis that, like INO1, contain the repeated element UAS(INO) (consensus 5' CATGTGAAAT 3'). In this study, we evaluated the effects of these four mutations, singly and in all possible combinations, on growth and expression of INO1. All strains carrying an ino2Delta or ino4Delta mutation, or both, failed to grow in medium lacking inositol. However, when grown in liquid culture in medium containing limiting amounts of inositol, the opi1Delta ino4Delta strain exhibited a level of INO1 expression comparable to, or higher than, the wild-type strain growing under the same conditions. Furthermore, INO1 expression in the opi1Delta ino4Delta strain was repressed in cells grown in medium fully supplemented with both inositol and choline. Similar results were obtained using the opi1Delta ino2Delta ino4Delta strain. Regulation of INO1 was also observed in the absence of the SIN3 gene product. Therefore, while Opi1p, Sin3p, and the Ino2p/Ino4p complex all affect the overall level of INO1 expression in an antagonistic manner, they do not appear to be responsible for transmitting the signal that leads to repression of INO1 in response to inositol. Various models for Opi1p function were tested and no evidence for binding of Opi1p to UAS(INO), or to Ino2p or Ino4p, was obtained.  相似文献   

2.
Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1. 82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The gene encoding ethanolamine kinase (EKI1) was identified from the Saccharomyces Genome Data Base (locus YDR147W) based on its homology to the Saccharomyces cerevisiae CKI1-encoded choline kinase, which also exhibits ethanolamine kinase activity. The EKI1 gene was isolated and used to construct eki1Delta and eki1Delta cki1Delta mutants. A multicopy plasmid containing the EKI1 gene directed the overexpression of ethanolamine kinase activity in wild-type, eki1Delta mutant, cki1Delta mutant, and eki1Delta cki1Delta double mutant cells. The heterologous expression of the S. cerevisiae EKI1 gene in Sf-9 insect cells resulted in a 165,500-fold overexpression of ethanolamine kinase activity relative to control insect cells. The EKI1 gene product also exhibited choline kinase activity. Biochemical analyses of the enzyme expressed in insect cells, in eki1Delta mutants, and in cki1Delta mutants indicated that ethanolamine was the preferred substrate. The eki1Delta mutant did not exhibit a growth phenotype. Biochemical analyses of eki1Delta, cki1Delta, and eki1Delta cki1Delta mutants showed that the EKI1 and CKI1 gene products encoded all of the ethanolamine kinase and choline kinase activities in S. cerevisiae. In vivo labeling experiments showed that the EKI1 and CKI1 gene products had overlapping functions with respect to phospholipid synthesis. Whereas the EKI1 gene product was primarily responsible for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway, the CKI1 gene product was primarily responsible for phosphatidylcholine synthesis via the CDP-choline pathway. Unlike cki1Delta mutants, eki1Delta mutants did not suppress the essential function of Sec14p.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Ethanolamine kinase (EKI) is the first committed step in phosphatidylethanolamine (PtdEtn) biosynthesis via the CDP-ethanolamine pathway. We identify a human cDNA encoding an ethanolamine-specific kinase EKI1 and the structure of the EKI1 gene located on chromosome 12. EKI1 overexpression in COS-7 cells results in a 170-fold increase in ethanolamine kinase-specific activity and accelerates the rate of [3H]ethanolamine incorporation into PtdEtn as a function of the ethanolamine concentration in the culture medium. Acceleration of the CDP-ethanolamine pathway does not result in elevated cellular PtdEtn levels, but rather the excess PtdEtn is degraded to glycerophosphoethanolamine. EKI1 has negligible choline kinase activity in vitro and does not influence phosphatidylcholine biosynthesis. Acceleration of the CDP-ethanolamine pathway also does not change the rate of PtdEtn formation via the decarboxylation of phosphatidylserine. The data demonstrate the existence of separate ethanolamine and choline kinases in mammals and show that ethanolamine kinase can be a rate-controlling step in PtdEtn biosynthesis.  相似文献   

10.
11.
12.
13.
14.
We have identified a gene with gonad restricted expression throughout mouse development, which is orthologous to human EKI2 (ethanolamine kinase 2). Our studies showed that mouse Eki2 expression became upregulated in the male gonad during the period of sex determination. Expression was restricted to the Sertoli cells of the developing testis. Eki2 has sequence similarity to ethanolamine (73%) and choline kinases (54%).  相似文献   

15.
16.
17.
A genetic screen for ethanolamine auxotrophs has identified a novel mutant allele of the morphogenesis checkpoint dependent (MCD)-4 gene, designated mcd4-P301L. In the presence of a null allele for the phosphatidylserine (PtdSer) decarboxylase 1 gene (psd1 Delta), the mcd4-P301L mutation confers temperature sensitivity for growth on minimal medium. This growth defect is reversed by either ethanolamine or choline supplementation. Incubation of mutant cells with [(3)H]serine followed by analysis of the aminoglycerophospholipids demonstrated a 60% decrease in phosphatidylethanolamine (PtdEtn) formation compared to parental cells. Chemical analysis of phospholipid content after culture under non-permissive conditions also demonstrated a 60% decrease in the PtdEtn pool compared to the parental strain. Although the morphogenesis checkpoint dependent (MCD)-4 gene and its homologues have been shown to play a role in glycosylphosphatidylinositol (GPI) anchor synthesis, the mcd4-P301L strain displayed normal incorporation of [(3)H]inositol into both proteins and lipids. Thus, a defect in GPI anchor synthesis does not explain either the ethanolamine auxotrophy or biochemical phenotype of this mutant. We also examined the growth characteristics and PtdSer metabolism of a previously described mcd4-174 mutant strain, with defects in GPI anchor synthesis, protein modification and cell wall maintenance. The mcd4-174, psd1 Delta strain is a temperature sensitive ethanolamine auxotroph that requires osmotic support for growth, and displays normal PtdEtn formation compared to parental cells. These results reveal important genetic interactions between PSD1 and MCD4 genes, and provide evidence that Mcd4p can modulate aminoglycerophospholipid metabolism, in a way independent of its role in GPI anchor synthesis.  相似文献   

18.
Expression of the 180-kDa canine ribosome receptor in Saccharomyces cerevisiae leads to the accumulation of ER-like membranes. Gene expression patterns in strains expressing various forms of p180, each of which gives rise to unique membrane morphologies, were surveyed by microarray analysis. Several genes whose products regulate phospholipid biosynthesis were determined by Northern blotting to be differentially expressed in all strains that undergo membrane proliferation. Of these, the INO2 gene product was found to be essential for formation of p180-inducible membranes. Expression of p180 in ino2Delta cells failed to give rise to the p180-induced membrane proliferation seen in wild-type cells, whereas p180 expression in ino4Delta cells gave rise to membranes indistinguishable from wild type. Thus, Ino2p is required for the formation of p180-induced membranes and, in this case, appears to be functional in the absence of its putative binding partner, Ino4p.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号