首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mu transposons carrying the chloramphenicol resistance marker have been inserted into the cloned Escherichia coli genes sodA and sodB coding for manganese superoxide dismutase (MnSOD) and iron superoxide dismutase (FeSOD) respectively, creating mutations and gene fusions. The mutated sodA or sodB genes were introduced into the bacterial chromosome by allelic exchange. The resulting mutants were shown to lack the corresponding SOD by activity measurements and immunoblot analysis. Aerobically, in rich medium, the absence of FeSOD or MnSOD had no major effect on growth or sensitivity to the superoxide generator, paraquat. In minimal medium aerobic growth was not affected, but the sensitivity to paraquat was increased, especially in the sodA mutant. A sodA sodB double mutant completely devoid of SOD was also obtained. It was able to grow aerobically in rich medium, its catalase level was unaffected and it was highly sensitive to paraquat and hydrogen peroxide; the double mutant was unable to grow aerobically on minimal glucose medium. Growth could be restored by removing oxygen, by providing an SOD-overproducing plasmid or by supplementing the medium with the 20 amino acids. It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.  相似文献   

2.
3.
Azotobacter vinelandii contains two superoxide dismutases (SODs), a cytoplasmic iron-containing enzyme (FeSOD), and a periplasmic copper/zinc-containing enzyme (CuZnSOD). In this study, the FeSOD was found to be constitutive, while the activity of CuZnSOD increased as the culture entered the stationary phase. Total SOD (units/mg protein) in stationary phase cells grown under nitrogen-fixing conditions was not significantly different from those grown under non-nitrogen-fixing conditions. The gene encoding FeSOD (sodB) was isolated from an A. vinelandii cosmid library. A 1-kb fragment containing the coding region and 400 base pairs of upstream sequence was cloned and sequenced. The nucleotide sequence and the deduced amino acid sequence had a high degree of homology with other bacterial FeSODs, particularly with P. aeruginosa. Attempts to construct a sodB mutant by recombination of a sodB::kan insertion mutation into the multicopy chromosome of A. vinelandii were unsuccessful even in the presence of SOD mimics or nutritional supplements. These results suggest that FeSOD may be essential for the growth and survival of A. vinelandii, and that the periplasmic CuZnSOD cannot replace the function of FeSOD.  相似文献   

4.
To investigate the role of superoxide dismutases (SOD) in root colonization and oxidative stress, mutants of Pseudomonas putida lacking manganese-superoxide dismutase (MnSOD) (sodA), iron-superoxide dismutase (FeSOD) (sodB), or both were generated. The sodA sodB mutant did not grow on components washed from bean root surfaces or glucose in minimal medium. The sodB and sodA sodB mutants were more sensitive than wild type to oxidative stress generated within the cell by paraquat treatment. In single inoculation of SOD mutants on bean, only the sodA sodB double mutant was impaired in growth on root surfaces. In mixed inoculations with wild type, populations of the sodA mutant were equal to those of the wild type, but levels of the sodB mutant and, to a great extent, the sodA sodB mutant, were reduced. Confocal microscopy of young bean roots inoculated with green fluorescent protein-tagged cells showed that wild type and SOD single mutants colonized well predominantly at the root tip but that the sodA sodB double mutant grew poorly at the tip. Our results indicate that FeSOD in P. putida is more important than MnSOD in aerobic metabolism and oxidative stress. Inhibition of key metabolic enzymes by increased levels of superoxide anion may cause the impaired growth of SOD mutants in vitro and in planta.  相似文献   

5.
This review is concerned with the effects of environmental perturbations on the expression of the two superoxide dismutase (SOD) genes in Escherichia coli (sodA, MnSOD; sodB, FeSOD). Early studies using SOD activity, showed that MnSOD levels respond to changes in oxygen tension, type of substrate, redox active compounds, iron concentration, the nature of the terminal oxidant, and the redox potential of the medium. FeSOD levels appeared nominally insensitive to these perturbations. More recent molecular genetic studies revealed that sodA expression is subject to regulation by three major regulatory systems: fur (ferric uptake regulation) and arcA arcB (aerobic respiratory control) mediate repression of sodA, while a relatively new system, soxR soxS (superoxide response), mediates activation of sodA expression. By contrast, sodB expression, which is much less studied at this time, appears to be positively activated in trans by fur. A rudimentary gene regulation model is presented which rationalizes past observations, is experimentally testable, and should serve as a guide to future research in this area.  相似文献   

6.
Although cytosolic superoxide dismutases (SODs) are widely distributed among bacteria, only a small number of species contain a periplasmic SOD. One of these is Caulobacter crescentus, which has a copper-zinc SOD (CuZnSOD) in the periplasm and an iron SOD (FeSOD) in the cytosol. The function of periplasmic CuZnSOD was studied by characterizing a mutant of C. crescentus with an insertionally inactivated CuZnSOD gene. Wild-type and mutant strains showed identical tolerance to intracellular superoxide. However, in response to extracellular superoxide, the presence of periplasmic CuZnSOD increased survival by as much as 20-fold. This is the first demonstration that periplasmic SOD defends against external superoxide of environmental origin. This result has implications for those bacterial pathogens that contain a CuZnSOD. C. crescentus was shown to contain a single catalase/peroxidase which, like Escherichia coli KatG catalase/peroxidase, is present in both the periplasmic and cytoplasmic fractions. The growth stage dependence of C. crescentus catalase/peroxidase and SOD activity was studied. Although FeSOD activity was identical in exponential- and stationary-phase cultures, CuZnSOD was induced nearly 4-fold in stationary phase and the catalase/peroxidase was induced nearly 100-fold. Induction of antioxidant enzymes in the periplasm of C. crescentus appears to be an important attribute of the stationary-phase response and may be a useful tool for studying its regulation.  相似文献   

7.
The consumption of molecular oxygen by Pseudomonas aeruginosa can lead to the production of reduced oxygen species, including superoxide, hydrogen peroxide, and the hydroxyl radical. As a first line of defense against potentially toxic levels of endogenous superoxide, P. aeruginosa possesses an iron- and manganese-cofactored superoxide dismutase (SOD) to limit the damage evoked by this radical. In this study, we have generated mutants which possess an interrupted sodA (encoding manganese SOD) or sodB (encoding iron SOD) gene and a sodA sodB double mutant. Mutagenesis of sodA did not significantly alter the aerobic growth rate in rich medium (Luria broth) or in glucose minimal medium in comparison with that of wild-type bacteria. In addition, total SOD activity in the sodA mutant was decreased only 15% relative to that of wild-type bacteria. In contrast, sodB mutants grew much more slowly than the sodA mutant or wild-type bacteria in both media, and sodB mutants possessed only 13% of the SOD activity of wild-type bacteria. There was also a progressive decrease in catalase activity in each of the mutants, with the sodA sodB double mutant possessing only 40% of the activity of wild-type bacteria. The sodA sodB double mutant grew very slowly in rich medium and required approximately 48 h to attain saturated growth in minimal medium. There was no difference in growth of either strain under anaerobic conditions. Accordingly, the sodB but not the sodA mutant demonstrated marked sensitivity to paraquat, a superoxide-generating agent. P. aeuroginosa synthesizes a blue, superoxide-generating antibiotic similar to paraquat in redox properties which is called pyocyanin, the synthesis of which is accompanied by increased iron SOD and catalase activities (D.J. Hassett, L. Charniga, K. A. Bean, D. E. Ohman, and M. S. Cohen, Infect. Immun. 60:328-336, 1992). Pyocyanin production was completely abolished in the sodB and sodA sodB mutants and was decreased approximately 57% in sodA mutants relative to that of the wild-type organism. Furthermore, the addition of sublethal concentrations of paraquat to wild-type bacteria caused a concentration-dependent decrease in pyocyanin production, suggesting that part of the pyocyanin biosynthetic cascade is inhibited by superoxide. These results suggest that iron SOD is more important than manganese SOD for aerobic growth, resistance to paraquat, and optimal pyocyanin biosynthesis in P. aeruginosa.  相似文献   

8.
Copper-zinc superoxide dismutases (CuZnSODs) are infrequently found in bacteria although widespread in eukaryotes. Legionella pneumophila, the causative organism of Legionnaires' disease, is one of a small number of bacterial species that contain a CuZnSOD, residing in the periplasm, in addition to an iron SOD (FeSOD) in their cytoplasm. To investigate CuZnSOD function, we purified the enzyme from wild-type L. pneumophila, obtained amino acid sequence data from isolated peptides, cloned and sequenced the gene from a L. pneumophila library, and then constructed and characterized a CuZnSOD null mutant. In contrast to the cytoplasmic FeSOD, the CuZnSOD of L. pneumophila is not essential for viability. However, CuZnSOD is critical for survival during the stationary phase of growth. The CuZnSOD null mutant survived 10(4)- to 10(6)-fold less than wild-type L. pneumophila. In wild-type L. pneumophila, the specific activity of CuZnSOD increased during the transition from exponential to stationary-phase growth while the FeSOD activity was constant. These data support a role of periplasmic CuZnSOD in survival of L. pneumophila during stationary phase. Since L. pneumophila survives extensive periods of dormancy between growth within hosts. CuZnSOD may contribute to the ability of this bacterium to be a pathogen. In exponential phase, wild-type and CuZnSOD null strains grew with comparable doubling times. In cultured HL-60 and THP-1 macrophage-like cell lines and in primary cultures of human monocytes, multiplication of the CuZnSOD null mutant was comparable to that of wild type. This indicated that CuZnSOD is not essential for intracellular growth within macrophages or for killing of macrophages in those systems.  相似文献   

9.
10.
To investigate the involvement of RelA in the regulation of Legionella pneumophila virulence, a deletion substitution was constructed in the relA gene. The relA knockout resulted in an undetectable level of ppGpp in the cells during the stationary phase, but the original level was restored when the relA gene product was supplied on a plasmid. The effect of the relA mutation was examined with two systems that are known to be expressed during the stationary phase in L. pneumophila. Pigment production was found to be dependent on the relA gene product, and only one-half as much pigment was produced by the relA mutant as by the wild-type strain. Flagellum gene expression was also found to be dependent on the relA gene product, as determined with a flaA::lacZ fusion. However, the relA gene product was found to be dispensable for intracellular growth both in HL-60-derived human macrophages and in the protozoan host Acanthamoeba castellanii. To determine the involvement of the relA gene product in expression of L. pneumophila genes required for intracellular growth (icm/dot genes), nine icm::lacZ fusions were constructed, and expression of these fusions in the wild-type strain was compared with their expression in relA mutant strains. Expression of only one of the icm::lacZ fusions was moderately reduced in the relA mutant strain. Expression of the nine icm::lacZ fusions was also examined in a strain containing an insertion in the gene that codes for the stationary-phase sigma factor RpoS, and similar results were obtained. We concluded that RelA is dispensable for intracellular growth of L. pneumophila in the two hosts examined and that both RelA and RpoS play minor roles in L. pneumophila icm/dot gene expression.  相似文献   

11.
Two-dimensional gel analyses were made of proteins synthesized in Escherichia coli during various O2- -generating conditions. Nine proteins were constitutively synthesized over wild-type levels in superoxide dismutase (sodA sodB) double mutants. Addition of redox cycling agents such as paraquat and plumbagin at various concentrations induced up to 13 proteins in wild-type cells. Among these 13 were 5 of the 9 constitutively synthesized in the sodA sodB double mutants. Addition of these agents to the superoxide dismutase mutants in low micromolar concentrations induced an additional set of 14 proteins. The proteins induced included only five proteins that have been previously associated with stress responses, consisting of endonuclease IV (Nfo), three oxyR-regulated proteins, and one heat shock protein. O2- -mediated induction of the superoxide inducible (Soi) proteins in the wild type was independent of the oxyR+ gene for all but the three oxyR-regulated proteins. Analyses of proteins from three soi::lacZ gene fusions previously isolated (T. Kogoma, S. B. Farr, K. M. Joyce, and D. O. Natvig, Proc. Natl. Acad. Sci. USA 85:4799-4803, 1988) indicated the specific loss of one of these induced proteins in each fusion strain and the constitutive expression of some Soi proteins.  相似文献   

12.
The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.  相似文献   

13.
The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.  相似文献   

14.
15.
16.
17.
18.
During carbon-starvation-induced entry into stationary phase, Escherichia coli cells exhibit a variety of physiological and morphological changes that ensure survival during periods of prolonged starvation. Induction of 30-50 proteins of mostly unknown function has been shown under these conditions. In an attempt to identify C-starvation-regulated genes we isolated and characterized chromosomal C-starvation-induced csi::lacZ fusions using the lambda placMu system. One operon fusion (csi2::lacZ) has been studied in detail. csi2::lacZ was induced during transition from exponential to stationary phase and was negatively regulated by cAMP. It was mapped at 59 min on the E. coli chromosome and conferred a pleiotropic phenotype. As demonstrated by two-dimensional gel electrophoresis, cells carrying csi2::lacZ did not synthesize at least 16 proteins present in an isogenic csi2+ strain. Cells containing csi2::lacZ or csi2::Tn10 did not produce glycogen, did not develop thermotolerance and H2O2 resistance, and did not induce a stationary-phase-specific acidic phosphatase (AppA) as well as another csi fusion (csi5::lacZ). Moreover, they died off much more rapidly than wild-type cells during prolonged starvation. We conclude that csi2::lacZ defines a regulatory gene of central importanc e for stationary phase E. coli cells. These results and the cloning of the wild-type gene corresponding to csi2 demonstrated that the csi2 locus is allelic with the previously identified regulatory genes katF and appR. The katF sequence indicated that its gene product is a novel sigma factor supposed to regulate expression of catalase HPII and exonuclease III (Mulvey and Loewen, 1989). We suggest that this novel sigma subunit of RNA polymerase defined by csi2/katF/appR is a central early regulator of a large starvation/stationary phase regulon in E. coli and propose 'rpoS' ('sigma S') as appropriate designations.  相似文献   

19.
The sodB gene encoding the only superoxide dismutase (Fe-SOD) in cells of the cyanobacterium Synechocystis sp. PCC6803 was inactivated with gentamycin resistance aacC1 marker insertions located in the direct or inverted order toward the sodB gene. The corresponding delta sodB12 and delta sodB22 mutants are characterized by the complete absence of superoxide dismutase activity and the loss of viability upon standard photoautotrophic cultivation. Mutant cells can grow under conditions of a decreased illumination intensity and upon addition of NaHCO3 with catalase or bovine serum albumin in the growth medium. The delta sodB22 mutant is auxotrophic for leucine due to the polar effect of insertion into the sodB gene on the downstream leuB gene controlling leucine biosynthesis. These data suggest that Fe-SOD is very important for providing tolerance of Synechocystis cells to oxidative stress and that sodB and leuB genes are organized into a single operon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号