首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although small interfering RNA (siRNA) can silence the expression of disease-related genes, delivery of these highly charged molecules is challenging. Delivery approaches for siRNAs are actively being pursued, and improved strategies are required for nontoxic and efficient delivery for gene knockdown. Low density lipoprotein (LDL) is a natural and endogenous nanoparticle that has a rich history as a delivery vehicle. Here, we examine purified LDL nanoparticles as carriers for siRNAs. When siRNA was covalently conjugated to cholesterol, over 25 chol-siRNA could be incorporated onto each LDL without changing nanoparticle morphology. The resulting LDL-chol-siRNA nanoparticles were selectively taken up into cells via LDL receptor mediated endocytosis, resulting in enhanced gene silencing compared to free chol-siRNA (38% gene knock down versus 0% knock down at 100 nM). However, silencing efficiency was limited by the receptor-mediated entrapment of the LDL-chol-siRNA nanoparticles in endolysosomes. Photochemical internalization demonstrated that endolysosome disruption strategies significantly enhance LDL-mediated gene silencing (78% at 100 nM).  相似文献   

3.
The conjugation of siRNA to molecules, which can be internalized into the cell via natural transport mechanisms, can result in the enhancement of siRNA cellular uptake. Herein, the carrier-free cellular uptake of nuclease-resistant anti-MDR1 siRNA equipped with lipophilic residues (cholesterol, lithocholic acid, oleyl alcohol and litocholic acid oleylamide) attached to the 5'-end of the sense strand via oligomethylene linker of various length was investigated. A convenient combination of H-phosphonate and phosphoramidite methods was developed for the synthesis of 5'-lipophilic conjugates of siRNAs. It was found that lipophilic siRNA are able to effectively penetrate into HEK293, HepG2 and KB-8-5 cancer cells when used in a micromolar concentration range. The efficiency of the uptake is dependent upon the type of lipophilic moiety, the length of the linker between the moiety and the siRNA and cell type. Among all the conjugates tested, the cholesterol-conjugated siRNAs with linkers containing from 6 to 10 carbon atoms demonstrate the optimal uptake and gene silencing properties: the shortening of the linker reduces the efficiency of the cellular uptake of siRNA conjugates, whereas the lengthening of the linker facilitates the uptake but retards the gene silencing effect and decreases the efficiency of the silencing.  相似文献   

4.
In this study, dimerized siRNAs linked by a cleavable disulfide bond were synthesized for efficient intracellular delivery and gene silencing. The reducible dimerized siRNAs showed far enhanced complexation behaviors with cationic polymers as compared to monomeric siRNA at the same N/P ratio, as demonstrated by microscopic techniques and gel characterization. Dimerized siRNAs targeting green fluorescent protein (GFP) or vascular endothelial growth factor (VEGF) were complexed with linear polyethylenimine (LPEI), and treated to various cell lines to examine gene transfection efficiencies. In comparison to monomer siRNA/LPEI complexes, dimeric siRNA/LPEI complexes showed greatly enhanced cellular uptake and gene silencing effects in vitro. These results were mainly due to the higher charge density and promoted chain flexibility of the dimerized siRNAs, providing more compact and stable siRNA complexes. In addition, the conjugation strategy of reducible siRNA dimers was further extended: poly(ethylene glycol) (PEG)-modified dimerized siRNAs and heterodimers of siRNAs targeting two different genes (e.g., GFP and VEGF) were synthesized, and their gene silencing efficiencies were characterized. The dimerized siRNA complex system holds great potential for in vivo systemic gene therapy.  相似文献   

5.
Assimilation of LDL by experimental tumours in mice   总被引:2,自引:0,他引:2  
We have studied the uptake of 125I-labelled low-density lipoprotein (LDL) by seven experimental murine tumours in vivo. Four tumours (Lewis Lung carcinoma, B-16, MS-2 and Colon 26) showed a higher relative uptake of lipoprotein as compared to the liver, two (L-1210 and P-388) had a very low lipoprotein uptake, while lipoprotein uptake by tumour M5 was similar to that of the liver. The data was confirmed by tracing tissue uptake of lipoproteins using [14C]sucrose-labeled LDL. These in vivo findings correlated well with the in vitro specific binding of 125I-beta-VLDL to membranes prepared from tumours, thus suggesting that the expression of the LDL receptor in the tumours is related to the in vivo uptake of lipoprotein. Further analysis of the LDL receptor by ligand blotting showed that the tumor receptor has several of the liver LDL receptor characteristics (including apparent Mr, sensitivity to proteinases, and Ca2+ requirement of lipoprotein binding). In summary, our data show that experimental murine tumours express the LDL receptor and suggest that the high relative in vivo uptake of LDL is determined by the elevated LDL-receptor expression in the tumours.  相似文献   

6.
Receptor-associated protein (RAP) is a ligand for all members of low-density lipoprotein (LDL) receptor families. RAP is internalized into cells via receptor-mediated endocytic trafficking, making it an attractive mechanism for efficient gene delivery. In this study, we have developed a gene delivery system using RAP as a targeting ligand. A RAP cDNA lacking a C-terminal heparin-binding domain was amplified by polymerase chain reaction (PCR) from a human liver cDNA library and was reamplified by using a primer containing a cysteine codon at its carboxyl end to facilitate its conjugation to polylysine (polyK). RAP was purified using a bacterial expression system and coupled to poly-D-lysine (PDL) or poly-L-lysine (PLL) of average MW 50 kDa via the heterobifunctional cross-linker SPDP. Using fluorescence-labeled RAP ligand, cellular uptake of the transfection complexes into HepG2 cells was shown to be highly efficient and more specific to PDL-conjugated RAP compared with PLL-conjugated one. Plasmid DNA containing a luciferase reporter gene was condensed with either RAP-PDL or RAP-PLL. In vitro transfection into HepG2 cells with RAP-PDL conjugate resulted in significantly higher luciferase expression levels in comparison to either nonconjugated PDL, or RAP-PLL, or LipofecAMINE/DNA complexes in the presence of 10% fetal bovine serum. Luciferase expression was inhibited by the addition of excess RAP. Treatment of the cells with Lovastatin, which inhibits HMG-Co reductase and increases expression of LDL receptor, stimulates luciferase expression, suggesting that the gene delivery is specifically mediated by LDL receptor. Thus, RAP-PDL conjugates have the potential to be used as a new nonviral gene delivery vector.  相似文献   

7.
Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which entails the binding of these particles to specific receptors in specialised areas of the cell surface, the subsequent internalization of the receptor–lipoprotein complex, and ultimately the degradation and release of the ingested lipoproteins’ constituent parts. We formulate a mathematical model to study the binding and internalization (endocytosis) of LDL and VLDL particles by hepatocytes in culture. The system of ordinary differential equations, which includes a cholesterol-dependent pit production term representing feedback regulation of surface receptors in response to intracellular cholesterol levels, is analysed using numerical simulations and steady-state analysis. Our numerical results show good agreement with in vitro experimental data describing LDL uptake by cultured hepatocytes following delivery of a single bolus of lipoprotein. Our model is adapted in order to reflect the in vivo situation, in which lipoproteins are continuously delivered to the hepatocyte. In this case, our model suggests that the competition between the LDL and VLDL particles for binding to the pits on the cell surface affects the intracellular cholesterol concentration. In particular, we predict that when there is continuous delivery of low levels of lipoproteins to the cell surface, more VLDL than LDL occupies the pit, since VLDL are better competitors for receptor binding. VLDL have a cholesterol content comparable to LDL particles; however, due to the larger size of VLDL, one pit-bound VLDL particle blocks binding of several LDLs, and there is a resultant drop in the intracellular cholesterol level. When there is continuous delivery of lipoprotein at high levels to the hepatocytes, VLDL particles still out-compete LDL particles for receptor binding, and consequently more VLDL than LDL particles occupy the pit. Although the maximum intracellular cholesterol level is similar for high and low levels of lipoprotein delivery, the maximum is reached more rapidly when the lipoprotein delivery rates are high. The implications of these results for the design of in vitro experiments is discussed.   相似文献   

8.
Lavigne C  Thierry AR 《Biochimie》2007,89(10):1245-1251
In order to better understand the mechanism of delivery of siRNAs by lipid-based vectors, we investigated the subcellular distribution of siRNAs directed against cyclin D1 delivered by the DLS system in the breast cancer cell line MCF-7. Cells were treated with cyclopentenone or 17beta-estradiol to modulate the level of expression of cyclin D1 mRNA. We qualitatively observed that siRNA localized to specific cytoplasmic compartments in the periphery of the nucleus in granular-like structures that do not correspond to early endosomal vesicles. In cells treated with either cyclopentenone or 17beta-estradiol cellular distribution of siRNAs was not affected but variations in the amount of siRNAs present in cells were found. We suggest these variations might be associated with the effects of cyclopentenone and 17beta-estradiol in cyclin D1 gene expression. Low cytotoxicity and highly cellular uptake of lipoplexes was observed in the presence of serum indicating that the DLS system could be a useful tool for siRNA vectorization in vitro and in vivo.  相似文献   

9.
Cells acquire cholesterol via de novo synthesis and high affinity receptor-mediated uptake of low-density lipoprotein (LDL). Some tumor tissues display increased receptor-mediated uptake of LDL as compared with the corresponding normal tissues. This increased LDL receptor activity is unexplained: a high cholesterol demand for cell growth or a mechanism directly linked to cell transformation. LDL has therefore been proposed as a potential carrier for chemotherapeutic agents. Various methods have been used to incorporate antineoplastic lipophilic drugs into LDL. The resultant drug-LDL complexes have been shown to be cytotoxic towards tumor cells in vitro, via the LDL receptor dependent pathway. However little is now on the in vivo fate of this complex. We described the incorporation of lipophilic derivatives of ellipticine into LDL by a fusion or facilitated transfer technique between drug containing microemulsions and LDL. The drug-LDL complex expressed similar metabolic activity, in vitro and in vivo, than native LDL. Initial experiments with melanoma B16 tumor-bearing mice suggest that LDL may be a potential drug carrier in the treatment of malignant diseases. The knowledge of the molecular mechanism of the expression of the LDL receptor in tumor cells and the ability to downregulate the LDL receptor in the normal tissues, will define the application field of this targeting approach.  相似文献   

10.
A major challenge to the development of therapeutic small interfering RNAs (siRNAs) is specific and efficient in vivo delivery to target cells. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining siRNAs with cell type-specific affinity ligands such as monoclonal antibodies. The antibody-directed siRNA complex enters target cells through receptor endocytosis and is subsequently released to the cytosol to specifically silence target gene expression through biologically conserved RNA interference (RNAi) pathways. Antibody fragments fused with a small basic nucleic-acid-binding protein and antibody fragment-directed nanoimmunoliposomes are two examples of effective delivery vehicles in vivo. The demonstrated specificity of in vivo gene silencing and the lack of nonspecific immune activation and systemic toxicity encourage further development of therapies based on cell type-specific delivery of siRNA.  相似文献   

11.
Low-density lipoprotein (LDL) provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI) contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs). Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL]) to over a micron (chylomicrons) is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains), surface loading (intercalation into the phospholipid monolayer), and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core). Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (相似文献   

12.
Peptide nucleic acids (PNAs) are effective antisense reagents that bind specific mRNAs preventing their translation. However, PNAs cannot cross cell membranes, hampering delivery to cells. To overcome this problem we made PNAs membrane-permeant by conjugation to the lipophilic triphenylphosphonium (TPP) cation through a disulphide bond. The TPP cation led to efficient PNA uptake into the cytoplasm where the disulphide bond was reduced, releasing the antisense PNA to block expression of its target gene. This method of directing PNAs into cells is a significant improvement on current procedures and will facilitate in vitro and pharmacological applications of PNAs.  相似文献   

13.
Short interfering RNAs (siRNAs) that mediate specific gene silencing through RNA interference (RNAi) are widely used to study gene function and are also being developed for therapeutic applications. Many nucleic acids, including double- (dsRNA) and single-stranded RNA (ssRNA), can stimulate innate cytokine responses in mammals. Despite this, few studies have questioned whether siRNA may have a similar effect on the immune system. This could significantly influence the in vivo application of siRNA owing to off-target effects and toxicities associated with immune stimulation. Here we report that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood. The immunostimulatory activity of formulated siRNAs and the associated toxicities are dependent on the nucleotide sequence. We have identified putative immunostimulatory motifs that have allowed the design of siRNAs that can mediate RNAi but induce minimal immune activation.  相似文献   

14.
Gene silencing by systemic delivery of synthetic siRNAs in adult mice   总被引:38,自引:0,他引:38  
In mammalian cells, RNA duplexes of 21-23 nucleotides, known as small interfering RNAs (siRNAs) specifically inhibit gene expression in vitro. Here, we show that systemic delivery of siRNAs can inhibited exogenous and endogenous gene expression in adult mice. Cationic liposome-based intravenous injection in mice of plasmid encoding the green fluorescent protein (GFP) with its cognate siRNA, inhibited GFP gene expression in various organs. Furthermore, intraperitoneal injection of anti-TNF-alpha siRNA inhibited lipopolysaccharide-induced TNF-alpha gene expression, whereas secretion of IL1-alpha was not inhibited. Importantly, the development of sepsis in mice following a lethal dose of lipopolysaccharide injection, was significantly inhibited by pre-treatment of the animals with anti-TNF-alpha siRNAs. Collectively, these results demonstrate that synthetic siRNAs can function in vivo as pharmaceutical drugs.  相似文献   

15.
Small interfering RNAs (siRNAs) are widely used for analyzing gene function and have the potential to be developed into human therapeutics. However, persistent siRNA expression in normal cells may cause toxic side effects. Therefore, the therapeutic applications of RNAi in cancer require either the specific delivery of synthetic siRNAs into cancer cells or the control of siRNA expression. Accordingly, we have developed a cancer-specific vector that expresses siRNAs from the human survivin promoter. A plasmid vector expressing siRNAs under this promoter enabled efficient gene silencing of gene expression in different cancer cell lines. The levels of inhibition were comparable to that obtained with the constitutively active U6 promoter. By contrast to U6 promoter, no significant gene silencing was obtained with the Survivin promoter in normal mammary epithelial cells. Collectively, these data indicate that the survivin promoter is suitable for directing siRNA expression in cancer cells, but not normal cells.  相似文献   

16.
RNAi therapy has undergone two stages of development, direct injection of synthetic siRNAs and delivery with artificial vehicles or conjugated ligands; both have not solved the problem of efficient in vivo siRNA delivery. Here, we present a proof-of-principle strategy that reprogrammes host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes and facilitate the in vivo delivery of siRNAs through circulating exosomes. By combination of different genetic circuit modules, in vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.g., brain), inducing potent target gene silencing in these tissues. The therapeutic value of our strategy is demonstrated by programmed silencing of critical targets associated with various diseases, including EGFR/KRAS in lung cancer, EGFR/TNC in glioblastoma and PTP1B in obesity. Overall, our strategy represents a next generation RNAi therapeutics, which makes RNAi therapy feasible.Subject terms: RNAi, siRNAs  相似文献   

17.
RNA interference (RNAi) offers great potential not only for in vitro target validation, but also as a novel therapeutic strategy based on the highly specific and efficient silencing of a target gene, e.g. in tumor therapy. Since it relies on small interfering RNAs (siRNAs), which are the mediators of RNAi-induced specific mRNA degradation, a major issue is the delivery of therapeutically active siRNAs into the target tissue/target cells in vivo. For safety reasons, strategies based on (viral) vector delivery may be of only limited clinical use. The more desirable approach is to directly apply catalytically active siRNAs. This review highlights the recent knowledge on the guidelines for the selection of siRNAs which show high activity in the absence of non-specific siRNA effects. It then focuses on approaches to directly use siRNA molecules in vivo and gives a comprehensive overview of in vivo studies based on the direct application of siRNAs to induce RNAi. One promising approach is the in vivo siRNA delivery through complexation of chemically unmodified siRNAs with polyethylenimine (PEI). The anti-tumoral effects of PEI/siRNA-based targeting of tumor-relevant genes in vivo are described.  相似文献   

18.
Cationic liposome-mediated delivery of siRNAs in adult mice   总被引:13,自引:0,他引:13  
RNA interference mediated by small interfering RNAs (siRNAs) is a powerful tool for dissecting gene function and drug target validation. siRNAs can be synthesized in large quantities and thus can be used to analyze a large number of sequences emerging from genome projects in a cost-effective manner. However, the major obstacle to the use of siRNAs as therapeutics is the difficulty involved in effective in vivo delivery. We used a fluorescein-labeled siRNA to investigate cationic liposome-mediated intravenous and intraperitoneal delivery in adult mice. We show that this simple approach can deliver siRNAs into various cell types. In addition, we show that in contrast to mouse cells, siRNAs can activate the non-specific pathway in human freshly isolated monocytes, resulting in TNF-alpha and IL-6 production. Taken together, the data provide a basis for lipid-mediated systemic delivery of siRNAs and indicate that certain siRNA sequences can activate the innate immunity response genes that can be beneficial for the treatment of cancer.  相似文献   

19.
The scavenger receptor class B type I (SR-BI) recognizes a broad variety of lipoprotein ligands, including HDL, LDL, and oxidized LDL. In this study, we investigated whether SR-BI plays a role in the metabolism of cholesterol-rich lipoprotein remnants that accumulate in apolipoprotein E (apoE)(-/-) mice. These particles have an unusual apolipoprotein composition compared with conventional VLDL and LDL, containing mostly apoB-48 as well as substantial amounts of apoA-I and apoA-IV. To study SR-BI activity in vivo, the receptor was overexpressed in apoE(-/-) mice by adenoviral vector-mediated gene transfer. An approximately 10-fold increase in liver SR-BI expression resulted in no detectable alterations in VLDL-sized particles and a modest depletion of cholesterol in intermediate density lipoprotein/LDL-sized lipoprotein particles. This decrease was not attributable to altered secretion of apoB-containing lipoproteins in SR-BI-overexpressing mice. To directly assess whether SR-BI metabolizes apoE(-/-) mouse lipoprotein remnants, in vitro assays were performed in both CHO cells and primary hepatocytes expressing high levels of SR-BI. This analysis showed a remarkable deficiency of these particles to serve as substrates for selective lipid uptake, despite high-affinity, high-capacity binding to SR-BI. Taken together, these data establish that SR-BI does not play a direct role in the metabolism of apoE(-/-) mouse lipoprotein remnants.  相似文献   

20.
RNA interference is a powerful tool for target-specific knockdown of gene expression. The triggers for this process are duplex small interfering RNAs (siRNAs) of 21-25 nt with 2-bp 3' overhangs produced in cells by the RNase III family member Dicer. We have observed that short RNAs that are long enough to serve as Dicer substrates (D-siRNA) can often evoke more potent RNA interference than the corresponding 21-nt siRNAs; this is probably a consequence of the physical handoff of the Dicer-produced siRNAs to the RNA-induced silencing complex. Here we describe the design parameters for D-siRNAs and a protocol for in vitro and in vivo intraperitoneal delivery of D-siRNAs and siRNAs to macrophages. siRNA delivery and transfection and analysis of macrophages in vivo can be accomplished within 36 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号