首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current and potential shortfalls in the number of radiation scientists stand in sharp contrast to the emerging scientific opportunities and the need for new knowledge to address issues of cancer survivorship and radiological and nuclear terrorism. In response to these challenges, workshops organized by the Radiation Research Program (RRP), National Cancer Institute (NCI) (Radiat. Res. 157, 204-223, 2002; Radiat. Res. 159, 812-834, 2003), and National Institute of Allergy and Infectious Diseases (NIAID) (Nature, 421, 787, 2003) have engaged experts from a range of federal agencies, academia and industry. This workshop, Education and Training for Radiation Scientists, addressed the need to establish a sustainable pool of expertise and talent for a wide range of activities and careers related to radiation biology, oncology and epidemiology. Although fundamental radiation chemistry and physics are also critical to radiation sciences, this workshop did not address workforce needs in these areas. The recommendations include: (1) Establish a National Council of Radiation Sciences to develop a strategy for increasing the number of radiation scientists. The strategy includes NIH training grants, interagency cooperation, interinstitutional collaboration among universities, and active involvement of all stakeholders. (2) Create new and expanded training programs with sustained funding. These may take the form of regional Centers of Excellence for Radiation Sciences. (3) Continue and broaden educational efforts of the American Society for Therapeutic Radiology and Oncology (ASTRO), the American Association for Cancer Research (AACR), the Radiological Society of North America (RSNA), and the Radiation Research Society (RRS). (4) Foster education and training in the radiation sciences for the range of career opportunities including radiation oncology, radiation biology, radiation epidemiology, radiation safety, health/government policy, and industrial research. (5) Educate other scientists and the general public on the quantitative, basic, molecular, translational and applied aspects of radiation sciences.  相似文献   

2.
The Radiation Research Podcast was funded just over five years ago by a few Radiation Research Society members. To date, the volunteers running the podcast have produced and published online, open access, over 70 audio interviews. The program includes monthly interviews with authors of articles, award winners, and other recordings at conferences, such as round table discussions. We here present an overview of the podcast, from its creation to its fifth birthday, to explain how it is working, how the featured interviews are scheduled, and what future directions are taken. So, stay tuned!  相似文献   

3.
P. M. Bird 《CMAJ》1964,90(19):1114
The current status of radiation protection in Canada is discussed in the last of a three-part series. Particular emphasis has been placed on the role of the Radiation Protection Division of the Department of National Health and Welfare. A radioactive fallout study program has been established involving the systematic collection of air and precipitation samples from 24 locations, soil samples from 23 locations, fresh-milk samples from 16 locations, wheat samples from nine areas and human-bone specimens from various hospitals throughout Canada. A whole-body-counting facility and a special study of fallout in Northern areas have also been initiated. For any age group, the highest average strontium-90 concentration in human bone so far reported has been less than four picocuries per gram of calcium compared with the maximum permissible level of 67 derived from the International Committee on Radiation Protection (ICRP) recommendations. By the end of 1963 a general downward trend of levels of radioactivity detected in other parts of the program has been observed. Programs to assess the contribution to the radiation exposure of members of the population from medical x-rays, nuclear reactor operations and natural background-radiation sources have also been described. The annual genetically significant dose from diagnostic x-ray examinations in Canadian public hospitals has been estimated to be 25.8 mrem. Results from the reactor-environment monitoring programs have not suggested the presence of radioactivity beyond that contributed from fallout.  相似文献   

4.
Rose CM 《Radiation research》2002,157(5):607-609
Radiation scientists represent an important resource in homeland defense. Security analysts worry that a crude but deadly radiological bomb might be fashioned from stolen nuclear material and a few sticks of dynamite. Such a device could kill dozens, hundreds, and possibly thousands and could contaminate a square mile or more. Emergency workers may call upon radiation scientists to aid the injured. Educational materials are available on the ACR, ASTRO, and RRS websites, linked to the Armed Forces Radiobiology Research Institute and the Oak Ridge National Laboratory, to provide radiation workers material that they can use to help emergency room and civil defense personnel after a terrorist attack. Radiation scientists are urged to obtain these materials and contact their local hospital and public health authorities to volunteer their services and expertise.  相似文献   

5.
The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in our knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared with previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers, including space travelers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.Invited paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

6.
Cell phones and cancer: what is the evidence for a connection?   总被引:7,自引:0,他引:7  
There have been allegations in the media and in the courts that cell phones and other types of hand-held transceivers are a cause of cancer. There have also been numerous public objections to the siting of TV, radio and cell phone transmission facilities because of a fear of cancer induction. A recent publication in Radiation Research by Repacholi et al. (147, 631-640, 1997) which suggests that exposure to radiofrequency (RF) radiation may increase lymphoma incidence in mice has contributed to this controversy. The goal of this review is to provide biomedical researchers a brief overview of the existing RF radiation-cancer studies. This article begins with a brief review of the physics and technology of cell phones. It then reviews the existing epidemiological studies of RF radiation, identifying gaps in our knowledge. Finally, the review discusses the cytogenetics literature on RF radiation and the whole-animal RF-radiation carcinogenesis studies. The epidemiological evidence for an association between RF radiation and cancer is found to be weak and inconsistent, the laboratory studies generally do not suggest that cell phone RF radiation has genotoxic or epigenetic activity, and a cell phone RF radiation-cancer connection is found to be physically implausible. Overall, the existing evidence for a causal relationship between RF radiation from cell phones and cancer is found to be weak to nonexistent.  相似文献   

7.
Summary Radiation action occurs over a broad timescale which extends from the very early physical processes associated with energy absorption to the very late biological effects, such as carcinogenesis which may not become apparent until many years later. The various temporal stages of radiation action are classified and their interrelationships described. Experimental projects in cellular radiation chemistry, including pulse radiolysis, are discussed, together with some applications of the techniques in this general area.The paper also deals with some aspects of the oxygen effect in radiobiology and the mechanisms of its action. Various studies employing fast response techniques have been useful in verifying the role of fast free radical reactions in the oxygen effects and examples are given of some applications. Investigations with other hypoxic cell sensitizers, the electron affinic agents, are also briefly discussed, with an account of how studies of the timescale of radiation sensitization can be valuable in understanding mechanisms. Possible mechanisms of action of radiation sensitization by oxygen and other agents, including radical fixation and direct action processes, are considered in the light of evidence from some model systems.Invited paper, presented at the 14th Annual Meeting of European Society of Radiation Biology, Jülich, Germany, October 8–14, 1978  相似文献   

8.
BackgroundCervical cancer is a public health problem in Latin America. Radiotherapy plays a fundamental role both as definitive or adjuvant treatment. There are important intra and inter-country differences regarding access and availability of radiotherapy facilities in this region. The aim of a study was to standardize the basic clinical and technical criteria for the radiation treatment of patients with CC in Chile and provide a guide for Latin American Radiation Oncologists.Materials and methodsForty-one expert radiation oncologists from the Chilean Radiation Oncology Society made a consensus using the Delphi methodology.ResultsThere was a high degree of agreement for each of the recommendations. Those with the lowest percentage were related to the definition of the conformal 3D technique as the standard for definitive external radiotherapy (81%) and the criteria for extended nodal irradiation (85%).ConclusionsThese recommendations present an updated guide for radiotherapy treatment of patients with cervical cancer for Latin America. Those should be implemented according to local resources of each institution.  相似文献   

9.
Summary The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on variou receptor function - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiation-induced membrane phenomena on the development and regeneration of radiation injuries. Invited plenary lecture presented at 16th Annual Meeting of the European Society for Radiation Biology, Krakow, Poland, 7–10 September 1981  相似文献   

10.
Radiation therapy is effective against many cancerous and noncancerous disease processes. As with other therapeutics, side effects must be anticipated, recognized, and managed appropriately. Radiation retinopathy is a vision-threatening complication of ocular, orbital, periorbital, facial, nasopharyngeal, and cranial irradiation. Factors that appear important in the pathogenesis of radiation retinopathy include total radiation dosage, fraction size, concomitant chemotherapy, and preexisting vascular disorders. Clinical manifestations of the disorder include macular edema and nonproliferative and proliferative retinopathy, similar to changes seen in diabetic retinopathy. Argon laser photocoagulation has proved efficacious for managing macular edema and fibrovascular proliferation in some of these patients. Ongoing basic laboratory and clinical research efforts have led to a better understanding of the pathogenesis, natural history, and treatment response of radiation retinopathy. The ultimate goal of this knowledge is to improve the prevention, recognition, and management of this vision-threatening complication.  相似文献   

11.
The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26–29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program’s Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described. Work performed under the auspices of the auspices of the US National Aeronautics and Space Administration and the US Department of Energy.  相似文献   

12.
Research at the European Synchrotron Radiation Facility medical beamline.   总被引:3,自引:0,他引:3  
The application of synchrotron radiation in medical research has become a mature field of research at synchrotron facilities worldwide. In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges differentiates these sources from standard clinical and research tools. At the European Synchrotron Radiation Facility (Grenoble, France), a major research facility is operational on an advanced wiggler radiation beamport, ID17. The beamport is designed to carry out a broad range of research ranging from cell radiation biology to in vivo human studies. Medical imaging programs at ID17 include transvenous coronary angiography, computed tomography, mammography and bronchography. In addition, a major research program on microbeam radiation therapy is progressing. This paper will present a very brief overview of the beamline and the imaging and therapy programs.  相似文献   

13.
Wilma G. Stewart 《CMAJ》1962,87(22):1173-1177
The concepts of radiation protection in survival operations are explained, and procedures devised to control radiation hazards for the protection of the population and maintenance of the operating efficiency of survival operations personnel are presented.Radiation protection is a command function. The medical responsibility is to provide advice on the probable effects of radiation exposure in the light of existing knowledge of these effects in man.The major hazard is that of external exposure to penetrating gamma radiation. Radiation exposure guides indicate that persons may be exposed to not more than 100 r whole body radiation in a six-week period, or 200 r whole body radiation in a period in excess of six weeks, without loss of operational efficiency. Beta radiation from fallout deposited on skin or clothing may produce burns, but these injuries will not be incapacitating and can be controlled by simple procedures.The internal hazard is mainly from ingestion of food or water contaminated with radioactive material. For protection, only canned or packaged foods and water from covered or deep wells are consumed during the early days after a nuclear attack.  相似文献   

14.
A summary is provided of presentations and discussions at the NASA Radiation Biomarker Workshop held September 27-28, 2007 at NASA Ames Research Center in Mountain View, CA. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including those exposed during long-duration space travel. Topics discussed included the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage after large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. A summary of conclusions is provided at the end of the report.  相似文献   

15.
16.
Since its inception in 1954, Radiation Research has published an estimated total of about 8700 scientific articles up to August 2001, about 520, or roughly 6%, of which are primarily related to physics. This average of about 11 articles per year indicates steadily continuing contributions by physicists, though there are appreciable fluctuations from year to year. These works of physicists concern radiation sources, dosimetry, instrumentation for measurements of radiation effects, fundamentals of radiation physics, mechanisms of radiation actions, and applications. In this review, we have selected some notable accomplishments for discussion and present an outlook for the future.  相似文献   

17.
Most medical schools in Spain (80%) offer undergraduate training in oncology. This education is highly variable in terms of content (theory and practical training), number of credits, and the medical specialty and departmental affiliation of the professors. Much of this variability is due to university traditions in the configuration of credits and programmes, and also to the structure of the hospital-based practical training. Undergraduate medical students deserve a more coherent and modern approach to education with a strong emphasis on clinical practice. Oncology is an interdisciplinary science that requires the input of professors from multiple specialties to provide the primary body of knowledge and skills needed to obtain both a theoretical and clinical understanding of cancer. Clinical skills should be a key focus due to their importance in the current model of integrated medical management and care.Clinical radiation oncology is a traditional and comprehensive hospital-based platform for undergraduate education in oncology. In Spain, a significant number (n = 80) of radiation oncology specialists have a contractual relationship to teach university courses. Most Spanish universities (80%) have a radiation oncologist on staff, some of whom are department chairs and many others are full professors who have been hired and promoted under competitive conditions of evaluation as established by the National Agency for Quality Evaluation.The Spanish Society of Radiation Oncology (SEOR) has identified new opportunities to improve undergraduate education in oncology. In this article, we discuss proposals related to theoretical (20 items) and practical clinical training (9 items). We also describe the SEOR University Forum, which is an initiative to develop a strategic plan to implement and organize cancer education at the undergraduate level in an interdisciplinary teaching spirit and with a strong contribution from radiation oncologists.  相似文献   

18.
Starting in 2001, Japanese astronauts will live aboard the International Space Station (ISS) for 3 to 6 months a year. For astronauts, space radiation is primarily hazardous. Therefore, the National Space Development Agency of Japan (NASDA) is developing a system for Space Radiation Safety Operations. This report describes our overall image of Space Radiation Safety Operations aboard the ISS, especially our proceedings in drafting the "Space Radiation Exposure Limits for Japanese ISS Astronauts."  相似文献   

19.
Previous surveys of radiation therapy among the Life Span Study (LSS) population at the Radiation Effects Research Foundation (RERF) revealed that 1,670 (1.4%) of the LSS participants received radiation treatments before 1984. The data on therapeutic radiation doses are indispensable for studying the relationship between radiation treatments and subsequent cancer occurrences. In this study, the radiation treatments were reproduced experimentally to determine the scattered radiation doses. The experiments were conducted using a female human phantom and various radiation sources, including a medium-voltage X-ray machine and a (60)Co gamma-ray source. Doses were measured using thermoluminescence dosimetry and ionization chambers. Radiation doses were determined for the salivary glands, thyroid gland, breast, lung, stomach, colon, ovary and active bone marrow. The results have been used for documenting the organ doses received by patients in previous surveys. The contribution of therapeutic irradiation to the occurrence of chromosome aberrations was studied using data on doses to active bone marrow from both radiation treatments and atomic bomb exposures in 26 RERF Adult Health Study participants. The results suggest that radiation treatments contributed to a large part of their frequencies of stable-type chromosome aberrations. The therapeutic radiation doses determined in the present study are available for investigating the effects of therapeutic irradiation on the subsequent primary cancers among atomic bomb survivors who received radiation treatments.  相似文献   

20.
Late effects that develop in normal tissues adjacent to the tumor site in the months to years after radiotherapy can reduce the quality of life of cancer survivors. They can be dose-limiting and debilitating or life-threatening. There is now evidence that some late effects may be preventable or partially reversible. A workshop, "Modifying Normal Tissue Damage Postirradiation", was sponsored by the Radiation Research Program of the National Cancer Institute to identify the current status of and research needs and opportunities in this area. Mechanistic, genetic and physiological studies of the development of late effects are needed and will provide a rational basis for development of treatments. Interdisciplinary teams will be needed to carry out this research, including pathologists, physiologists, geneticists, molecular biologists, experts in functional imaging, wound healing, burn injury, molecular biology, and medical oncology, in addition to radiation biologists, physicists and oncologists. The participants emphasized the need for developing and choosing appropriate models, and for radiation dose-response studies to determine whether interventions remain effective at the radiation doses used clinically. Both preclinical and clinical studies require long-term follow-up, and easier-to-use, more objective clinical scoring systems must be developed and standardized. New developments in biomedical imaging should provide useful tools in all these endeavors. The ultimate goals are to improve the quality of life and efficacy of treatment for cancer patients treated with radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号